海洋大學河海工程學系2002 工程數學 (-) 二 B 班期中考 $OPEN\ BOOK$

- **1.** If $g(x) = \frac{1}{2}(x + \frac{3}{x})$, determine $g(g(g(\cdots g(2)))) = ?$ and $g(g(g(\cdots g(-2)))) = ?$ (5 %) If $y_{n+1}(x) = \int_0^x 2s \, y_n(s) ds + 1$, find $y_1(x), y_2(x)$ and $y_3(x)$ (3 %) determine $\lim_{n \to \infty} y_n(s) = ?$ (7 %) where $y_0(x) = 1$.
- **2.** Solve the Euler-Cauchy equation (20 %) $x^2y''(x) 3xy'(x) + 4y(x) = 0$, using (1). $y_1(x) = x^m$, (2). Solve another complementary solution by using L'Hospital's rule, (3). Solve another complementary solution by using $y_2(x) = y_1(x)u_1(x)$. (4). Solve another complementary solution by using Wronskian.
- 3. Explain the excitation, beating and resonance mathematically and physically. (10 %)
- 4. Given the following ordinary differential equations, (36 %)

$$\frac{dy}{dx} = \frac{2xy}{x^2 - y^2},\tag{1}$$

$$\frac{dy}{dx} = \frac{y^2 - x^2}{2xy},\tag{2}$$

$$\frac{dy}{dx} = \frac{-2xy}{x^2 - y^2},\tag{3}$$

$$\frac{dy}{dx} = \frac{x^2 - y^2}{2xy},\tag{4}$$

plot the solutions and indicate the orthogonal relationships.

ODE	Equation.(1)	Equation.(2)	Equation.(3)	Equation.(4)
Separable (Y or N)				
Exact (Y or N)				
Integrating factor				
Homogeneous (Y or N)				
Solution				
Orthogonality $(1,2,3,4)$				

5. Given the following first order ODEs,

$$y_1'(x) + y_1(x) = 2\cos(x)$$

$$y_2'(x) + y_2(x) = 2\sin(x)$$

$$y_3'(x) + y_3(x) = e^{-x}$$

solve their particular solutions:

- (a). Rewrite $y_1(x) = A\cos(x \alpha)$, where A > 0, $0 < \alpha < 2\pi$, determine A and α . (5%)
- (b). Rewrite $y_2(x) = B \sin(x \beta)$, where B > 0, $0 < \beta < 2\pi$, determine B and β . (5%)
- (e). Solve $y_3(x)$. (10 %)