1．Given the nonconstant coefficient second order ODE
$x^{2} y^{\prime \prime}(x)-2 x y^{\prime}-10 y=-10$
（1）．Assume the $y=x^{n}$ for the complementary solution，determine n ．
$n^{2}-3 n-10=0$
$n=5$ or -2
（2）．If $y_{1}(x)=1 / x^{2}$ is one of the complementary solution，please determine the other one $y_{2}(x)$ by method of variations of parameters，$y_{2}(x)=y_{1}(x) u_{1}(x)$ ．Please find $u_{1}(x)$ ．
$u_{1}(x)=\frac{c_{1}}{7} x^{7}+c_{2}$
（3）．Solve the particular solution by $y_{p}(x)=y_{1}(x) v_{1}(x)+y_{2}(x) v_{2}(x)$ ，where
$y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0$
$y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=-10 / x^{2}$
Please determine v_{1}, v_{2} and y_{p} ．
$v_{1}=\frac{5}{7} x^{2}+c_{1}$
$v_{2}=\frac{2}{7} x^{-5}+c_{2}$
$y_{p}=1+\frac{c_{1}}{x^{2}}+c_{2} x^{5}$
（4）．By changing variable，$x=e^{t}$ and $y(x)=y\left(e^{t}\right)=Y(t)$ ，then determine the ODE for $Y(t)$ and solve $Y(t)$ and $y(x)$ ．
$Y^{\prime \prime}(t)-3 Y^{\prime}(t)-10 Y(t)=0$
Let $Y(t)=e^{m t}$
$m^{2}-3 m-10=0$
$m=5$ or -2
$Y(t)=e^{5 t}$ or $Y(t)=e^{-2 t}$
$y(x)=x^{5}$ or $y(x)=x^{-2}$

