工程數學二 B 班期末考 Jan.14,2004 (J.T. Chen)

1. Please fill in the following table (20%)

	p(x)	q(x)	x = 0 Regular? Irregularly singular? Regularly singular?	Indicial equation?	$r_1 \\ r_2$
$(1-x^2)y'' - 2xy' + 2y = 0$					
$y'' - \frac{2}{(1-x)^2}y = 0$					
4xy'' + 2y' + y = 0					
$x^2y'' + xy' + x^2y = 0$					

where $y'' + \overline{p(x)y' + q(x)y} = 0$

- 2. Solve the series solution of $(1-x^2)y'' 2xy' + 6y = 0$. (20%)
- 3. Solve the indicial equation and series solution of $x^2y'' 4xy' 6y = 0$ using $y(x) = \sum_{n=0}^{\infty} c_n x^{n+r}$. (20%)
- 4. Find the indicial equation of x(x-1)y'' + 3xy' + y = 0. (10%) Find the series solution for the case of smaller r_1 . (10%)
- 5. Find the indicial equation of $(1-x^2)y''-xy'+y=0$. (10%) Find the series solution using $\sum_{n=0}^{\infty} c_n x^{n+r}$ for the case of larger r_2 . (10%)
- 6. Find the indicial equation of $(1-x^2)y'' xy' + 4y = 0$. (10%) Find the series solution using $\sum_{n=0}^{\infty} c_n x^{n+r}$ for the case of smaller r_1 . (10%)

【日期:2004/1/7 檔名:Final2004.doc】