Clairaut＇s 微分方程式：

$$
y=x y^{\prime}-\frac{1}{4} y^{\prime 2}
$$

General solution：

$$
y=x c-\frac{1}{4} c^{2}, \text { for any } c
$$

Singular solution $y=y(x)$ by parameter representation

$$
x=x(c), y=y(c)
$$

Two conditions must be satisfied if $(x(c), y(c))$ is intersection point with the same tangent line

$$
\begin{align*}
& y(c)=x(c) c-\frac{1}{4} c^{2} \tag{1}\\
& \left.\frac{d y}{d x}\right|_{(x(c), y(c))}=c
\end{align*}
$$

By considering

$$
\left.\frac{d y}{d x}\right|_{(x(c), y(c))}=\left.\frac{d y(c) / d c}{d x(c) / d c}\right|_{(x(c), y(c))}=c \rightarrow y^{\prime}(c)=c x^{\prime}(c)
$$

Eq．（1）can be differentiated with respect to c ，we have

$$
y^{\prime}(c)=x^{\prime}(c) c+x(c)-\frac{1}{2} c
$$

Therefore，we have

$$
x(c)=\frac{1}{2} c, y(c)=\frac{1}{4} c^{2}
$$

The singular solution is $y=x^{2}$ ．
Mohr－Columb criterion

$$
\begin{aligned}
& (x-a)^{2}+y^{2}=r^{2}(a) \\
& 2(x-a)+2 y=2 r(a)
\end{aligned}
$$

The envelope is a straight line．
Monge cone

$$
\begin{aligned}
& z-z_{0}=p(s)\left(x-x_{0}\right)+q(s)\left(y-y_{0}\right) \\
& 0=p^{\prime}(s)\left(x-x_{0}\right)+q^{\prime}(s)\left(y-y_{0}\right)
\end{aligned}
$$

We have the envelope of Monge cone．

