Table 1: Types of boundaries

Type	Diagram	Equation
Fixed		$u(0, t)=0$
Free		$\frac{\partial u(0, t)}{\partial x}=0$
Mass		$m \ddot{u}(0, t)=T \frac{\partial u(0, t)}{\partial x}$
Spring		$\gamma u(0, t)=T \frac{\partial u(0, t)}{\partial x}$
Dashpot		$c \dot{u}(0, t)=T \frac{\partial u(0, t)}{\partial x}$

1.2 Reflection and transmission at boundaries

1.2.1 Types of boundaries

There are several types of boundary conditions as shown in Table 1.2.1.

1.2.2 Reflection from a fixed boundary

Consider a displacement in a semi-infinite string of $x \geq 0$ with a fixed boundary at $x=0$. As shown in Section 1.1.3, a general solution in time domain for the wave equation is written as

$$
\begin{equation*}
u(x, t)=f\left(t-x / c_{0}\right)+g\left(t+x / c_{0}\right) \tag{39}
\end{equation*}
$$

where g and f denote the incident wave and the reflected wave propagating in the negative and positive x directions, respectively. From the boundary condition $u(0, t)=0$, we have

$$
\begin{equation*}
f(t)=-g(t) \tag{40}
\end{equation*}
$$

Thus the displacement in the semi-infinite string is expressed as

$$
\begin{equation*}
u(x, t)=-g\left(t-x / c_{0}\right)+g\left(t+x / c_{0}\right) \tag{41}
\end{equation*}
$$

Exercise 1.2.2-a Determine the reflected wave from a free boundary subjected to the indicent wave $g\left(c_{0} t+x\right)$.

1.2.3 Reflection of time harmonic waves from a fixed boundary

As shown in Section 1.1.2, a time harmonic general solution can be written as

$$
\begin{equation*}
\tilde{u}(x, t)=\bar{u}(x) e^{-i \omega t} \equiv F(\omega) e^{i\left(k_{0} x-\omega t\right)}+G(\omega) e^{-i\left(k_{0} x+\omega t\right)} \tag{42}
\end{equation*}
$$

where $F(\omega)$ and $G(\omega)$ are amplitudes of harmonic waves.

If the fixed boundary condition $\tilde{u}(0, t)=0$ is given at the end of a semi-infinite string, we have $F(\omega)=-G(\omega)$. It then follows that

$$
\begin{equation*}
\tilde{u}(x, t)=\bar{u}(x) e^{-i \omega t}=\left\{-G(\omega) e^{i k_{0} x}+G(\omega) e^{-i k_{0} x}\right\} e^{-i \omega t} \tag{43}
\end{equation*}
$$

Here the Fourier transform of a general function $p(t+\alpha)$ is defined by

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(t+\alpha) e^{i \omega t} d t=\int p(s) e^{i \omega(s-\alpha)} d s=e^{-i \omega \alpha} P(\omega) \tag{44}
\end{equation*}
$$

where $P(\omega)$ is the Fourier spectrum of $p(t)$. Conversely, the inverse Fourier transform is written as

$$
\begin{equation*}
p(t+\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(\omega) e^{-i \omega \alpha} e^{-i \omega t} d \omega \tag{45}
\end{equation*}
$$

If we consider $G(\omega)$ in eq.(43) as the Fourier spectrum of a function $g(t)$ in time domain, then the inverse Fourier transform of eq.(43) gives

$$
\begin{align*}
u(x, t) & \equiv \frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{u}(x) e^{-i \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{-G(\omega) e^{i k_{0} x}+G(\omega) e^{-i k_{0} x}\right\} e^{-i \omega t} d \omega=-g\left(t-x / c_{0}\right)+g\left(t+x / c_{0}\right) \tag{46}
\end{align*}
$$

1.2.4 Reflection of harmonic waves from an elastic boundary

- harmonic wave solution and boundary condition

$$
\begin{equation*}
\tilde{u}(x, t)=G(\omega) e^{i\left(k_{0} x+\omega t\right)}+F(\omega) e^{i\left(k_{0} x-\omega t\right)}, \quad \gamma \tilde{u}(0, t)=T \partial \tilde{u}(0, t) / \partial x \tag{47}
\end{equation*}
$$

- amplitude of the reflected wave

$$
\begin{align*}
\gamma(G+F) & =i k_{0} T(F-G) \tag{48}\\
\frac{F}{G} & =-\frac{\gamma+i k_{0} T}{\gamma-i k_{0} T}=-1 e^{i \phi(\omega)} \quad \text { (no energy loss) } \tag{49}
\end{align*}
$$

If the spring has very large γ for the spring constant(stiff spring), then $F \approx-G$. In the limit of $\gamma \rightarrow 0$ for a very soft spring, we have $F \approx G$.

Exercise 1.2.4-a Assume that the transient pulse of the incident wave has positive and negative rectangular shapes, given by $g(t)=H(t)-H(t-a)-\{H(t-a)-H(t-2 a)\}$, where $H(t)$ is the Heaviside function. Then $G(\omega)$ is obtained by

$$
\begin{equation*}
G(\omega)=\frac{1}{-i \omega}\left(1-2 e^{-i \omega a}+e^{-2 i \omega a}\right) \tag{50}
\end{equation*}
$$

Calculate $F(\omega)$ numerically by choosing appropriate constants for $\gamma, T c_{0}$ and a from eq.(49), and take the inverse Fourier transform of $\left.F(\omega) e^{i k_{0} x}\right|_{x=2 a}$ to obtain the time variation of the reflected displacement at $x=2 a$.
Note that for the incident pulse given by $g(t)=H(t)-H(t-a)$, the transient displacement varies as shown in Fig. 2.

Exercise 1.2.4-b Determine the reflected wave due to a boundary with mass subjected to the harmonic indicent wave $G \exp \left[i\left(k_{0} x+\omega t\right)\right]$.

1.2.5 Reflection and transmission at interface

Consider reflection and transmission of the incident wave u^{i} from the interface between different springs as shown in Fig. 3. For the time harmonic incident wave given by $\tilde{u}^{i}=F^{i}(\omega) e^{i\left(k_{1} x-\omega t\right)}$, assume that reflection and transmission waves have the following form

$$
\begin{equation*}
\tilde{u}^{r}=G^{r}(\omega) e^{-i\left(k_{1} x+\omega t\right)} \text { and } \tilde{u}^{t}=F^{t}(\omega) e^{i\left(k_{2} x-\omega t\right)} \tag{51}
\end{equation*}
$$

where $k_{i}=\omega / c_{i}, c_{i}=\sqrt{T / \rho_{i}}$.

Figure 2: Reflection at the boundary supported by spring.

Figure 3: Incident, reflected, and transmitted waves at a discontinuity in the string

The continuity conditions at the interface are given by

$$
\begin{equation*}
\tilde{u}^{i}+\tilde{u}^{r}=\tilde{u}^{t}, \quad \frac{\partial \tilde{u}^{i}}{\partial x}+\frac{\partial \tilde{u}^{r}}{\partial x}=\frac{\partial \tilde{u}^{t}}{\partial x} \quad \text { at } x=0 . \tag{52}
\end{equation*}
$$

Substitute eq.(51) into (52) yields

$$
\begin{equation*}
F^{i}+G^{r}=F^{t}, \quad k_{1} F^{i}-k_{1} G^{r}=k_{2} F^{t} \tag{53}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
F^{t}=\frac{2 k_{1}}{k_{1}+k_{2}} F^{i}=\frac{2 c_{2}}{c_{1}+c_{2}} F^{i}, \quad G^{r}=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} F^{i}=\frac{c_{2}-c_{1}}{c_{1}+c_{2}} F^{i} . \tag{54}
\end{equation*}
$$

1.2.6 Propagator-matrix method for multi-connected media

Consider the problem to find a general solution in time harmonic state, which satisfies the following equation of motion.

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+k^{2} u=0 \tag{55}
\end{equation*}
$$

Assume the solutions as follows.

$$
\begin{equation*}
u(x)=u_{1}(x), \quad \frac{d u}{d x}(x)=u_{2}(x) \tag{56}
\end{equation*}
$$

Substituting eq.(56) into eq.(55) yields

$$
\begin{equation*}
\frac{d^{2} u_{1}}{d x^{2}}+k^{2} u_{1}=0, \quad \frac{d u_{2}}{d x}+k^{2} u_{1}=0 \tag{57}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
u_{2}=\frac{d u_{1}}{d x} \tag{58}
\end{equation*}
$$

From eqs.(57) and (58), it then follows

$$
\frac{d}{d x}\binom{u_{1}}{u_{2}}=\left[\begin{array}{cc}
0 & 1 \tag{59}\\
-k^{2} & 0
\end{array}\right]\binom{u_{1}}{u_{2}} \quad \text { or } \frac{d}{d x} \boldsymbol{f}(x)=\boldsymbol{A} \boldsymbol{f}(x)
$$

The solution of eq.(59) can be expressed as

$$
\begin{equation*}
\boldsymbol{f}(x)=\boldsymbol{C} \exp [\boldsymbol{A} x] \tag{60}
\end{equation*}
$$

Assume $\boldsymbol{f}(x)=\boldsymbol{f}\left(x_{0}\right)$ at $x=x_{0}$. Then $\boldsymbol{C}=\boldsymbol{f}\left(x_{0}\right) \exp \left[-\boldsymbol{A} x_{0}\right]$, and

$$
\begin{equation*}
\boldsymbol{f}(x)=\exp \left[\boldsymbol{A}\left(x-x_{0}\right)\right] \boldsymbol{f}\left(x_{0}\right) \tag{61}
\end{equation*}
$$

To evaluate $\exp \left[\boldsymbol{A}\left(x-x_{0}\right)\right]$, we can use Sylvester's formula

$$
\begin{equation*}
F(\boldsymbol{A})=\sum_{k=1}^{n} F\left(\lambda_{k}\right) \frac{\prod_{r \neq k}\left(\boldsymbol{A}-\lambda_{k} \boldsymbol{I}\right)}{\prod_{r \neq k}\left(\lambda_{k}-\lambda_{r}\right)} \tag{62}
\end{equation*}
$$

where $\lambda_{k}(k=1,2, \ldots, n)$ are distinct eigenvalues of a square matrix \boldsymbol{A}. The eigenvalues of the matrix \boldsymbol{A} are $\lambda_{1,2}= \pm i k$. Putting these results in eq.(62), we find

$$
\boldsymbol{P}\left(x, x_{0}, k\right) \equiv \exp \left[\boldsymbol{A}\left(x-x_{0}\right)\right]=\left[\begin{array}{cc}
\cos k\left(x-x_{0}\right) & \frac{1}{k} \sin k\left(x-x_{0}\right) \tag{63}\\
-k \sin k\left(x-x_{0}\right) & \cos k\left(x-x_{0}\right)
\end{array}\right]
$$

where $\boldsymbol{P}\left(x, x_{0}, k\right)$ is called the propagator matrix. Hence we have

$$
\binom{u_{1}(x)}{u_{2}(x)}=\underbrace{\left[\begin{array}{cc}
\cos k\left(x-x_{0}\right) & \frac{1}{k} \sin k\left(x-x_{0}\right) \tag{64}\\
-k \sin k\left(x-x_{0}\right) & \cos k\left(x-x_{0}\right)
\end{array}\right]}_{\boldsymbol{P}_{\left(x, x_{0}, k\right)}}\binom{u_{1}\left(x_{0}\right)}{u_{2}\left(x_{0}\right)}
$$

For multi-connected domains, the propagator matrix $\boldsymbol{P}\left(x, x_{0}, k\right)$ is $x_{j}>x>x_{j-1}$ is found from

$$
\begin{equation*}
\boldsymbol{f}(x)=\boldsymbol{P}\left(x, x_{j-1}, k_{j}\right) \boldsymbol{P}\left(x_{j-1}, x_{j-2}, k_{j-1}\right) \ldots \boldsymbol{P}\left(x_{1}, x_{0}, k_{1}\right) \boldsymbol{f}\left(x_{0}\right) \tag{65}
\end{equation*}
$$

