
Table 1: Types of boundaries

Type Diagram Equation

Fixed y'

T
u

x

u(0, t) = 0

Free
Tu

x

∂u(0,t)
∂x = 0

Mass
Tu

xm

mü(0, t) = T ∂u(0,t)
∂x

Spring
Tu

x

k γu(0, t) = T ∂u(0,t)
∂x

Dashpot
T

u

xc

cu̇(0, t) = T ∂u(0,t)
∂x

1.2 Reflection and transmission at boundaries

1.2.1 Types of boundaries

There are several types of boundary conditions as shown in Table 1.2.1.

1.2.2 Reflection from a fixed boundary

Consider a displacement in a semi-infinite string of x ≥ 0 with a fixed boundary at x = 0. As shown in
Section 1.1.3, a general solution in time domain for the wave equation is written as

u(x, t) = f(t − x/c0) + g(t + x/c0) (39)

where g and f denote the incident wave and the reflected wave propagating in the negative and positive
x directions, respectively. From the boundary condition u(0, t) = 0, we have

f(t) = −g(t). (40)

Thus the displacement in the semi-infinite string is expressed as

u(x, t) = −g(t − x/c0) + g(t + x/c0) (41)

Exercise 1.2.2-a Determine the reflected wave from a free boundary subjected to the indicent wave
g(c0t + x).

1.2.3 Reflection of time harmonic waves from a fixed boundary

As shown in Section 1.1.2, a time harmonic general solution can be written as

ũ(x, t) = ū(x)e−iωt ≡ F (ω)ei(k0x−ωt) + G(ω)e−i(k0x+ωt) (42)

where F (ω) and G(ω) are amplitudes of harmonic waves.
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If the fixed boundary condition ũ(0, t) = 0 is given at the end of a semi-infinite string, we have
F (ω) = −G(ω). It then follows that

ũ(x, t) = ū(x)e−iωt = {−G(ω)eik0x + G(ω)e−ik0x}e−iωt. (43)

Here the Fourier transform of a general function p(t + α) is defined by∫ ∞

−∞
p(t + α)eiωtdt =

∫
p(s)eiω(s−α)ds = e−iωαP (ω), (44)

where P (ω) is the Fourier spectrum of p(t). Conversely, the inverse Fourier transform is written as

p(t + α) =
1
2π

∫ ∞

−∞
P (ω)e−iωαe−iωtdω. (45)

If we consider G(ω) in eq.(43) as the Fourier spectrum of a function g(t) in time domain, then the
inverse Fourier transform of eq.(43) gives

u(x, t) ≡ 1
2π

∫ ∞

−∞
ū(x)e−iωtdω

=
1
2π

∫ ∞

−∞
{−G(ω)eik0x + G(ω)e−ik0x}e−iωtdω = −g(t − x/c0) + g(t + x/c0) (46)

1.2.4 Reflection of harmonic waves from an elastic boundary

• harmonic wave solution and boundary condition

ũ(x, t) = G(ω)ei(k0x+ωt) + F (ω)ei(k0x−ωt), γũ(0, t) = T∂ũ(0, t)/∂x. (47)

• amplitude of the reflected wave

γ(G + F ) = ik0T (F − G) (48)
F

G
= −γ + ik0T

γ − ik0T
= −1eiφ(ω) ( no energy loss) (49)

If the spring has very large γ for the spring constant(stiff spring), then F ≈ −G. In the limit of γ → 0
for a very soft spring, we have F ≈ G.

Exercise 1.2.4-a Assume that the transient pulse of the incident wave has positive and negative
rectangular shapes, given by g(t) = H(t) − H(t − a) − {H(t − a) − H(t − 2a)}, where H(t) is the
Heaviside function. Then G(ω) is obtained by

G(ω) =
1

−iω
(1 − 2e−iωa + e−2iωa). (50)

Calculate F (ω) numerically by choosing appropriate constants for γ, T c0 and a from eq.(49), and
take the inverse Fourier transform of F (ω)eik0x|x=2a to obtain the time variation of the reflected
displacement at x = 2a.
Note that for the incident pulse given by g(t) = H(t) − H(t − a), the transient displacement varies as
shown in Fig. 2.

Exercise 1.2.4-b Determine the reflected wave due to a boundary with mass subjected to the harmonic
indicent wave G exp[i(k0x + ωt)].

1.2.5 Reflection and transmission at interface

Consider reflection and transmission of the incident wave ui from the interface between different springs
as shown in Fig. 3. For the time harmonic incident wave given by ũi = F i(ω)ei(k1x−ωt), assume that
reflection and transmission waves have the following form

ũr = Gr(ω)e−i(k1x+ωt) and ũt = F t(ω)ei(k2x−ωt) (51)

where ki = ω/ci, ci =
√

T/ρi.
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Figure 2: Reflection at the boundary supported by spring.
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Figure 3: Incident, reflected, and transmitted waves at a discontinuity in the string

The continuity conditions at the interface are given by

ũi + ũr = ũt,
∂ũi

∂x
+

∂ũr

∂x
=

∂ũt

∂x
at x = 0. (52)

Substitute eq.(51) into (52) yields

F i + Gr = F t, k1F
i − k1G

r = k2F
t. (53)

Then we have
F t =

2k1

k1 + k2
F i =

2c2

c1 + c2
F i, Gr =

k1 − k2

k1 + k2
F i =

c2 − c1

c1 + c2
F i. (54)

1.2.6 Propagator-matrix method for multi-connected media

Consider the problem to find a general solution in time harmonic state, which satisfies the following
equation of motion.

d2u

dx2
+ k2u = 0. (55)

Assume the solutions as follows.
u(x) = u1(x),

du

dx
(x) = u2(x) (56)

Substituting eq.(56) into eq.(55) yields

d2u1

dx2
+ k2u1 = 0,

du2

dx
+ k2u1 = 0. (57)

Also we have
u2 =

du1

dx
. (58)
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From eqs.(57) and (58), it then follows

d

dx

(
u1

u2

)
=

[
0 1

−k2 0

] (
u1

u2

)
or

d

dx
f(x) = Af(x). (59)

The solution of eq.(59) can be expressed as

f(x) = C exp[Ax]. (60)

Assume f(x) = f(x0) at x = x0. Then C = f(x0) exp[−Ax0], and

f(x) = exp[A(x − x0)]f(x0). (61)

To evaluate exp[A(x − x0)], we can use Sylvester’s formula

F (A) =
n∑

k=1

F (λk)

∏
r 6=k

(A − λkI)∏
r 6=k

(λk − λr)
(62)

where λk(k = 1, 2, . . . , n) are distinct eigenvalues of a square matrix A. The eigenvalues of the matrix A
are λ1,2 = ±ik. Putting these results in eq.(62), we find

P (x, x0, k) ≡ exp[A(x − x0)] =
[

cos k(x − x0) 1
k sin k(x − x0)

−k sin k(x − x0) cos k(x − x0)

]
(63)

where P (x, x0, k) is called the propagator matrix. Hence we have(
u1(x)
u2(x)

)
=

[
cos k(x − x0) 1

k sin k(x − x0)
−k sin k(x − x0) cos k(x − x0)

]
︸ ︷︷ ︸

P (x,x0,k)

(
u1(x0)
u2(x0)

)
(64)

For multi-connected domains, the propagator matrix P (x, x0, k) is xj > x > xj−1 is found from

f(x) = P (x, xj−1, kj)P (xj−1, xj−2, kj−1) . . . P (x1, x0, k1)f(x0). (65)
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