
International Journal of Innovative
Computing, Information and Control ICIC International c°2006 ISSN 1349-4198
Volume 2, Number 3, June 2006 pp. 581—591

STUDY ON THE SURFACE FAST MULTIPOLE BOUNDARY
ELEMENT METHOD BASED ON SPHERICAL HARMONIC SPACE

– MATHEMATICAL THEORY PART –

Chunxiao Yu

College of Science
Yanshan University

Qinhuangdao 066004, P. R. China
chxy@ysu.edu.cn

Guangxian Shen

College of Mechanical Engineering
Yanshan University

Qinhuangdao 066004, P. R. China
sgx35@ysu.edu.cn

Received January 2005; revised July 2005

Abstract. The Fast Multipole Method (FMM) is applied for the boundary surface of 3-
D elasticity for the first time. On the mathematical basis of current FMM and Boundary
Element Method (BEM), a spherical harmonic function and some related Fast Multipole
Boundary Element Method (FM-BEM) numerical formulas are constructed for the bound-
ary surface. Fundamental theorems of the FM-BEM are presented and proved. Then a
complete FMM-BEM theoretical system for 3-D elasticity is preliminarily established,
which provides strong mathematical support for further promotion of the FM-BEM in
rolling engineering field and other fields.
Keywords: FMM, BEM, FM-BEM, Spherical harmonic function

1. Introduction. The so called Fast Multipole Method (FMM)[1] proposed by L. Green-
gard originates from a quantitative description of a multi-body electrostatic field. It is
suitable for the rapid computation of interacting potentials among a large number of par-
ticle sets. Recently, the FMM has been applied in mathematics, mechanics and in other
fields because of the small computation and memory requirement. On the international
scene, the Fast Multipole Boundary Element Method (FM-BEM) [2-4] is the latest devel-

opment mainly using the FMM to rapidly compute the summation term
nP
i=1

1
Ri
in discrete

boundary integral equations and to enlarge the solution scale.
For the study of the FM-BEM, Z. H. Yao’s groups [5-7] in Tsinghua University have

applied the FMM for 2-D and 3-D elasticity Boundary Element Method (BEM) using
Taylor serials expansion and successfully simulated the deformation–stress field of differ-
ent particles for composite materials. G. X. Shen’s groups [8-11] have applied the FMM
for 3-D elasticity, 3-D elasto-plasticity and 3-D contact BEM problems, completing the
large-scale simulation of rolling problems. J. T. Chen and K. H. Chen [12] have applied
the FMM for Double BEM (DBEM) to accelerate the construction of influence matrix and
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to solve 2-D large-scale acoustic problems. However, these studies have not involved the
application of the FMM for rapid computation of 3-D boundary surface BEM problems.
Therefore, the FMM suitable for discrete boundary integral domain terms is utilized for

3-D boundary surface in this work. The motivation for this research is to construct and
prove some related numerical formulas and fundamental theorems, to develop the BEM
and finally establish the FM-BEM theory, and to analyze the superiority of the FM-BEM.
The newly proposed FM-BEM will be a numerical computational method used for rolling
engineering field and other fields with high efficiency. Its application prospect is extremely
extensive.

2. Fundamental FM-BEM Formulas for 3-D Elasticity.

2.1. BEM fundamental solution. The partial differential equation for 3-D elasticity
can be transformed into boundary integral equation using Kelvin’s fundamental solution
and Betti’s reciprocity theorem. The boundary integral equation for 3-D elasticity without
body force is written as [3]

cij uj(x) +

Z
Γ

Tij(x, y) uj(y) dΓ =

Z
Γ

Uij(x, y) tj(y) dΓ (1)

where Γ denotes the boundary, x and y stand for the source point and observation point,
respectively. x , y ∈ Γ. The indices i , j = 1 , 2 , 3. cij are related to the geometry
information at the source point x. uj and tj specify boundary displacement and trac-
tion, respectively. Uij(x, y) and Tij(x, y) are kernel functions for 3-D elasticity, they are
expressed as:

Uij(x, y) =
1

16π(1− ν)μR
[(3− 4ν)δij + R, iR,j ] (2)

Tij(x, y) =
−1

8π(1− ν)R2

½
∂R

∂n
[(1− 2 ν) δij + 3R,iR,j ]− (1− 2 ν)(nj R,i−niR,j )

¾
(3)

where δij is the Kronecker function, R is the distance between y and x, R = y − x. μ
is the shear modulus and ν is the Poisson’s ratio. n is the outward normal vector of the
boundary.
At the source point xq, the numerical integration for Eq. (1) is expressed as:

cij uj(x
q) +

X
k,l,s

Tij[x
q, y(ξs)] uklj φ

l(ξs)J [y(ξs)]ωs−
X
k,l,s

Uij[x
q, y(ξs)] tklj φ

l(ξs)J [y(ξs)]ωs = 0

(4)
where ξ denotes the local coordinate, q and s stand for the source point and observation
point, respectively. uk lj and tk lj specify the displacement and traction of the node l of

element k, respectively. φl(ξ) denotes the shape function of node l, ωs denotes the weight
coefficient at ξs.

2.2. Discretization and solution of FM-BEM equations. From Eq. (4), we can
see that the operation

P
l, s

φl(ξs)J [y(ξs)]ωs for each element domain is invariable during

the process of all integrations. If iterative method is selected to solve the equation,
the two summation terms

P
k, l, s

uklj φ
l(ξs)J [y(ξs)]ωs and

P
k, l, s

tklj φ
l(ξs)J [y(ξs)]ωs in Eq. (4)

are constants in each iteration for every element because uklj and t
kl
j are assigned before
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iteration. For Eq. (4), the structures of two summation terms are the same. So only one
is required to discuss. For the first summation term in Eq. (4), let

Csk =
X
k,l,s

uklj φ
l(ξs)J [y(ξs)]ωs

If the fundamental solution Tij[x
q, y(ξs)] is expressed as the function of 1/Rs, namely,

Tij[x
q, y(ξs)] = fij(x

q)(1/Rs)

the first summation term in Eq. (4) can be written asX
k,l,s

Tij[x
q, y(ξs)]uklj φ

l(ξs) J [y(ξs)]ωs =
X
k,s

fij(x
q)(1/Rs)Csk

=
X
k,s

fij(x
q)(Csk/R

s) = fij(x
q)
X
k,s

Csk/R
s (5)

where Rs = kxq − y(ξs)k. It is obvious that the summation term in Eq. (5) can be
computed using the FMM.
Eq. (4) is rewritten as

cij uj(x
q) + Rijp(x

q)
X
k,l,s

1

|xq − y(ξs) |
©
uklj φ

l(ξs)np[y(ξ
s)] J [y(ξs)]ωs

ª

+Sij(x
q)
X
k,l,s

1

| xq − y(ξs) |
©
uklj φ

l(ξs)np[y(ξ
s)] yj J [y(ξ

s)]ωs
ª

−Pij(xq)
X
k,l,s

1

|xq − y(ξs) |
©
tklj φ

l(ξs) J [y(ξs)]ωs
ª

−Qi(xq)
X
k,l,s

1

|xq − y(ξs) |
©
tklj φ

l(ξs) yj(ξ
s) J [y(ξs)]ωs

ª
= 0 (6)

In Eq. (6), j = 1 , 2 , 3, p = 1 , 2 , 3. So the FMM is required to call 9 times for the first
summation term, 3 times for the second term, 3 times for the third term and one time
for the fourth term. It totals 16 times.
The boundary Γis discretized into NUM E boundary elements and NUM N bound-

ary nodes. When the boundary conditions are introduced, the equation system with
3×NUM N unknowns is established as

Ax = b (7)

Eq.(7) is solved by the combination of the FMM and Generalized Minimum Residual
Method (GMRES) [10].

3. FM-BEM Spherical Harmonic Function and Numerical Computation.
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3.1. Spherical harmonic function and addition formula. This part gives some im-
portant formulas to be used in the following parts.

Definition 3.1 [13]. In polar coordinate system, Laplace equation

1

r2
∂

∂ r
( r2

∂V

∂ r
) +

1

r2 sin θ

∂

∂θ
( sin θ

∂V

∂θ
) +

1

r2 sin2 θ

∂2V

∂ϕ2
= 0 (8)

is solved using Separation of Variables. Let V ( r , θ , ϕ ) = R(r) S( θ , ϕ ), we have

1

r2
d

d r
( r2

dR

d r
)− λ

r2
R = 0 (9)

and
1

sin θ

∂

∂θ
( sin θ

∂S

∂θ
) +

1

sin2 θ

∂2S

∂ϕ2
+ λS = 0 (10)

where λ is a constant. Eq. (10) has bounded periodic solutions with 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2 π if and only if λ = n (n + 1 ) , n = 0 , 1 , 2 , · · · . Such solutions are
expressed as Sn( θ , ϕ ) and called n-time spherical harmonic functions.

Theorem 3.1. When the direction of polar axis is changed in spherical polar coordinate
system, we have the following addition formula

Pn( cos γ ) =

nX
m=−n

(−1)mPmn ( cos θ )P−mn ( cos θ0 ) eim (ϕ−ϕ
0 ) (11)

=
nX

m=−n

(n−m )!
(n+m )!

Pmn ( cos θ )P
m
n ( cos θ

0 ) eim (ϕ−ϕ
0 ) (12)

= Pn( cos θ )Pn( cos θ
0 ) + 2

nX
m=1

(n−m )!
(n+m )!

Pmn ( cos θ )P
m
n ( cos θ

0 ) cosm (ϕ− ϕ0 ) (13)

where

cos γ = cos θ cos θ0 + sin θ sin θ0 cos (ϕ− ϕ0 ) (14)

γ is the included angle of OP (directed by θ , ϕ) and OP 0(directed by θ0 , ϕ0). Pmn (x) is
m-order n-time associated Legendre function of the first kind, which is defined by Hobson.

Pmn (x) = (−1)m ( 1− x2 )
m
2
dm

dxm
Pn(x) ( 0 ≤ m ≤ n , −1 ≤ x ≤ 1 ) (15)

where (1 − x2) m2 is positive. Using Rodrigues formula, the associated Legendre function
Pmn (x) can be proved to satisfy the relationship

P−mn (x) = (−1)m (n−m )!
(n+m)!

Pmn (x) (16)

and the orthogonal relation(m, m0 ≥ 0 )Z 1

−1
Pmn (x)P

m
n0 (x) dx =

2

2n+ 1

(n+m )!

(n−m )! δnn0 (17)



SURFACE FAST MULTIPOLE BOUNDARY ELEMENT METHOD 585

3.2. Selection of the FM-BEM spherical harmonic function. FromTheorem 3.1,
we have

1

sin θ

∂

∂θ
( sin θ

∂S

∂θ
) +

1

sin2 θ

∂2S

∂ϕ2
+ n (n+ 1 )S = 0 (18)

or

∂2S

∂θ2
+cot θ

∂S

∂θ
+

1

sin2 θ

∂2S

∂ϕ2
+n (n+1 )S = 0 (18)∗

The bounded (for θ ) periodic (for ϕ) solutions totals 2n + 1 with 0 ≤ ϕ ≤ 2π and
0 ≤ θ ≤ π.

Pmn ( cos θ ) e
imϕ , m = 0 , ±1 , · · · , ±n

In the FM-BEM, the spherical harmonic function

Ynm( θ , ϕ ) =

s
2n+ 1

4 π

(n−m )!
(n+m )!

Pmn ( cos θ ) e
imϕ (m = 0 , ±1 , · · · , ±n ) (19)

is taken as the bounded periodic solution of Eq. (18), which satisfies the relationshipZ π

0

Z 2π

0

Y ∗nmYn0m0 sin θ dϕ dθ = δmm0δnn0 (20)

where Y ∗nm is the conjugate complex of Ynm, and

Y ∗nm = (−1)mYn , −m (21)

Eq. (21) can be proved by Eq. (16). Eq. (20) can be proved by Eq. (17) and the following
relationship.

1

2 π

Z 2π

0

e−imxeinxdx = δmn ( ρ(x) = 1 ) (22)

However, Eq. (16) is required if m < 0 or m0 < 0.

3.3. Numerical computation of the FM-BEM spherical harmonic function.
In the FM-BEM, Eq. (19) is the bond of spherical harmonic function and associated
Legendre function. For the numerical computation of the spherical harmonic function
Ynm( θ , ϕ ) in Eq. (19), the key point is the associated Legendre polynomial. There are
many numerical methods to compute the associated Legendre polynomial. However, most
of them do not work too well. For example, there is an explicit expression

Pmn (x) =
(−1)m(n+m )!
2mm! (n−m )! ( 1− x

2 )
m
2 [ 1− (n−m )(m+ n+ 1 )

1! (m+ 1 )
(
1− x
2

)

+
(n−m )(n−m− 1 )(m+ n+ 1 )(m+ n+ 2 )

2! (m+ 1 )(m+ 2 )
(
1− x
2

)2 − · · · · · · ] (23)

where only the terms including ( 1−x )n−m are used. Because the sign alternates term by
term, continuous terms with contrary sign can be cancelled out in the solution. When n is
very big, the isolated term will be much bigger than the summation with poor precision. It
is an unsatisfactory method. Therefore, a more effective computational method is needed,
which is given as follows.
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The associated Legendre polynomial satisfies many recurrence relationships, which can
be with respect to n or m, or to both n and m. Most of them with respect to m are
instable and not suitable for numerical computation. Using mathematical induction,
Pmn (x) is proved to satisfy

(n−m )Pmn (x) = ( 2n− 1 ) xPmn−1(x)− (n+m− 1 ) Pmn−2(x) (24)

which is stable with respect to n and also a practical numerical formula. It can be proved
that Pmn (x) has closed expression

Pmm (x) = (−1)m( 2m− 1 )!! ( 1− x2 )
m
2 (25)

with respect to initial values. For Eq. (24), let n = m+ 1, Pmm−1(x) = 0, then

Pmm+1(x) = ( 2m+ 1 ) xP
m
m (x) (26)

In Eq. (24), the two initial values suitable for general n are given by Eqs. (25) and (26).

4. FM-BEM Theorems.

4.1. Fundamental theorems for the surface FM-BEM. All of the surface FM-BEM
formulas are established in a spherical polar coordinate system, as shown in Figure 1. To
apply the FMM for the boundary, define m-order n-time spherical harmonic function
Ynm( θ , ϕ ) according to Eq. (19). Fundamental theorems for the surface FM-BEM are
presented and proved as follows.

Figure 1. Spherical polar coordinate system.

Theorem 4.1. Assume that there are N charges X1 , X2 , · · · , XN with intensity
q1 , q2 , · · · , qN on surface S, whose spherical polar coordinates are ( r01, θ01,ϕ01), (r02, θ02,ϕ02),
· · · , ( r0N , θ0N ,ϕ0N ), respectively, as shown in Figure 2. For a random point X( r , θ , ϕ ) ∈
R3 satisfying r > max

1≤i≤N
{ r0i }, the potential Φ (X) generated from charges q1 , q2 , · · · , qN

is

Φ (X) =
∞X
n=0

nX
m=−n

Mm
n

rn+1
Ynm( θ , ϕ ) (27)
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Figure 2. Surface multipole expansion

where

Mm
n =

4 π

2n+ 1

NX
i=1

qi r
0
i
n Y ∗nm( θ

0
i , ϕ

0
i ) (28)

Let max
1≤i≤N

{ r0i } = δ1. For every p ≥ 1, the error estimation can be expressed as:

¯̄̄̄
¯Φ (X)−

PX
n=0

nX
m=−n

Mm
n

rn+1
Ynm( θ , ϕ )

¯̄̄̄
¯ ≤
⎛⎜⎜⎝

NP
i=1

| qi |

r − δ1

⎞⎟⎟⎠ µ δ1
r

¶P+1
(29)

Proof: Assume that O is the original point, the distance between X( r , θ , ϕ ) and
Xi( r

0
i , θ

0
i , ϕ

0
i ) is written as:

Ri = | ṙ − ṙ0i | =
p
r2 + r0i

2 − 2 r r0i cos γ
where r = | ṙ |, r0i = | ṙ0i |, γ is the included angle of ṙ and ṙ0i.
Let t =

r0i
r
, x = cos γ. If | t | < min

¯̄
x±
√
x2 − 1

¯̄
, then

1

Ri
=

1

r
√
1− 2xt+ t2

=
1

r

∞X
n=0

Pn(x) t
n =

∞X
n=0

Pn(x)
r0i
n

rn+1

From the addition formula expressed by Eq. (12), we have

Pn( cos γ ) =

nX
m=−n

(n−m )!
(n+m )!

Pmn ( cos θ )P
m
n ( cos θ

0
i ) e

im (ϕ−ϕ0i )

=
nX

m=−n

4π

2n+ 1

s
2n+ 1

4π

(n−m )!
(n+m )!

Pmn ( cos θ ) e
imϕ

s
2n+ 1

4π

(n−m )!
(n+m )!

Pmn ( cos θ
0
i ) e
−imϕ0i

=
4 π

2n+ 1

nX
m=−n

Ynm( θ , ϕ ) Y
∗
nm( θ

0
i , ϕ

0
i )
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Let Mm
n =

4π
2n+1

NP
i=1

qi r
0
i
n Y ∗nm( θ

0
i , ϕ

0
i ), we have

Φ (X) =

NX
i=1

qi
| ṙ − ṙ0i |

=
NX
i=1

qi [

∞X
n=0

(
4 π

2n+ 1

nX
m=−n

Ynm( θ , ϕ )Y
∗
nm( θ

0
i , ϕ

0
i ) )

r0i
n

rn+1
]

=
∞X
n=0

nX
m=−n

[
4π

2n+ 1

NX
i=1

qi r
0
i
n Y ∗nm( θ

0
i , ϕ

0
i ) ]

1

rn+1
Ynm( θ , ϕ )

=
∞X
n=0

nX
m=−n

Mm
n

rn+1
Ynm( θ , ϕ )

It is right Eq. (27). Eq. (29) can be seen in reference [13].

Theorem 4.2. Assume that there are N charges X1, X2, · · · , XN with intensity q1, q2, · · · ,
qN on surface S, whose spherical polar coordinates are ( r01, θ

0
1, ϕ

0
1), (r

0
2, θ

0
2, ϕ

0
2), · · · ,

(r0N , θ
0
N ,ϕ

0
N), respectively, as shown in Figure 3. For a random point X( r , θ , ϕ ) ∈ R3

satisfying r < min
1≤i≤N

{ r0i }, the potential Φ (X) generated from charges q1 , q2 , · · · , qN
is

Φ (X) =

∞X
n=0

nX
m=−n

Lmn Ynm( θ , ϕ ) r
n (30)

where

Lmn =
4 π

2n+ 1

NX
i=1

qi Y
∗
nm( θ

0
i , ϕ

0
i )

1

r0i
n+1

(31)

Let min
1≤i≤N

{ r0i } = δ2. For every p ≥ 1, the error estimation can be expressed as:

¯̄̄̄
¯Φ (X)−

pX
n=0

nX
m=−n

Lmn Ynm( θ , ϕ ) r
n

¯̄̄̄
¯ ≤
⎛⎜⎜⎝

NP
i=1

| qi |

δ2 − r

⎞⎟⎟⎠ µ r

δ2

¶P+1
(32)

Proof: Assume that O is the original point, the distance between X( r , θ , ϕ ) and
Xi( r

0
i , θ

0
i , ϕ

0
i ) is written as:

Ri = | ṙ − ṙ0i | =
p
r2 + r0i

2 − 2 r r0i cos γ
where r = | ṙ |, r0i = | ṙ0i |, γ is the included angle of ṙ and ṙ0i.
Let u = r

r0i
, y = cos γ. If | u | < min

¯̄̄
y ±

p
y2 − 1

¯̄̄
, then

1

Ri
=

1

r0i
p
1− 2 y u+ u2

=
1

r0i

∞X
n=0

Pn(y) u
n =

∞X
n=0

Pn(y)
rn

r0i
n+1
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From the addition formula expressed by Eq. (12), we have

Pn( cos γ ) =

nX
m=−n

(n−m )!
(n+m )!

Pmn ( cos θ )P
m
n ( cos θ

0
i ) e

im (ϕ−ϕ0i )

=
nX

m=−n

4π

2n+ 1

s
2n+ 1

4π

(n−m )!
(n+m )!

Pmn ( cos θ ) e
imϕ

s
2n+ 1

4π

(n−m )!
(n+m )!

Pmn ( cos θ
0
i ) e
−imϕ0i

=
4 π

2n+ 1

nX
m=−n

Ynm( θ , ϕ ) Y
∗
nm( θ

0
i , ϕ

0
i )

Let Lmn =
4π
2n+1

NP
i=1

qi Y
∗
nm( θ

0
i , ϕ

0
i )

1
r0i
n+1 , we have

Φ (X) =

NX
i=1

qi
| ṙ − ṙ0i |

=

NX
i=1

qi [

∞X
n=0

(
4 π

2n+ 1

nX
m=−n

Ynm( θ , ϕ )Y
∗
nm( θ

0
i , ϕ

0
i ) )

rn

r0i
n+1

]

=
∞X
n=0

nX
m=−n

[
4 π

2n+ 1

NX
i=1

qi Y
∗
nm( θ

0
i , ϕ

0
i )

1

r0i
n+1

] Ynm( θ , ϕ ) r
n

=

∞X
n=0

nX
m=−n

Lmn Ynm( θ , ϕ ) r
n

It is right Eq. (30). Eq. (32) can be seen in reference [13].

Figure 3. Surface local expansion

Assume that Xi( r
0
i , θ

0
i , ϕ

0
i ) ( i = 1 , 2 , · · · , N ) are random points belonging to

different elements on the surface. Let max
1≤ i, j≤N

¯̄
ṙ0i − ṙ0j

¯̄
= d0, min

1≤ k≤N
| ṙ − ṙ0k | = d1. If

d1 > 2d0, then the surface FM-BEM can be used, as shown in Figure 4.

4.2. Fundamental theorems for the domain FM-BEM. Detailed fundamental the-
orems for the domain FM-BEM have been studied and can be seen in reference [13].
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Figure 4. Sketch map of the surface FM-BEM

4.3. Comparison of FM-BEM and conventional BEM for computing influence
coefficients. Compared with conventional BEM, the FM-BEM shows obvious superiority
in the computation of influence coefficients, as shown in Figure 5. In Figure 5, qi denotes
the center of the ith element on the observation surface, pi denotes the ith source point,
Q denotes the multipole center.

a) Conventional BEM b) FM-BEM

Figure 5. Comparison for computing influence coefficients

From Figure 5, it can be seen that the operations can be approximately reduced from
O(N2) to O(N) if the FM-BEM is used in the computation of influence coefficients. The
computational efficiency can be greatly improved. The related numerical example and
results analysis will be given in another paper.

5. Conclusions. (1) The combination of FMM and BEM was deeply researched. The
fundamental formulas were presented for the FM-BEM. (2) Based on current FMM-BEM,
a spherical harmonic function and some related FM-BEM numerical formulas were con-
structed for the boundary surface. (3) The surface FM-BEM theory was established and
the FMM-BEM theoretical system was optimized, which laid mathematical foundation for
the generalization of FM-BEM in engineering fields. (4) Compared with the conventional
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BEM, the presented FM-BEM could reduce the computation of influence coefficients and
greatly improve the computational efficiency. However, this advantage could be realized
only for large-scale computations.
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