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ABSTRACT: The work presents how one-dimensional wave phenomenon is animated.

Several methods including the D’Alembert solution, the diamond rule, the Laplace transform

and the convolution integral, are employed in the Mathematica animation. All the analytical

derivations were carried out by using the symbolic software. Several examples, including an

infinite string with a spring, mass and damper as well as a semi-infinite string, two-media

string, string and beam subject to support motions, were demonstrated to show the validity of

the present formulation. Parameter study of impedance ratio and mass, spring, and dashpot

was also examined to see the transmission and reflection coefficient. � 2009 Wiley Periodicals,

Inc. Comput Appl Eng Educ 17: 323�339, 2009; Published online in Wiley InterScience (www.interscience.-

wiley.com); DOI 10.1002/cae.20224
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INTRODUCTION

One-dimensional wave problems have attracted much

attention since early last century and have been

studied both theoretically and experimentally due to

its simplicity in teaching the engineering mathe-

matics. The wave problem can be modeled as

a second-order partial differential problem, which

can be solved by engineering mathematics. Applica-

tion of the symbolic software computation to

engineering analysis was already a success by 1990

[1]. The computational tools of symbolic algebra such

as Mathematica, Reduce, Macsyma, and Maple were

introduced in the course to solve problems as

numerical experiments for an infinite string with

spring, mass and damper as well as semi-infinite

string and two-media strings, etc. Many researchers

have solved wave problem in different branches of

engineering. Wave reflection and transmission in

thin tubes with initial deformation have been

studied for the pulse propagation of blood in an artery

[2]. A string subjected to support motion was solved

by using the dual boundary integral equation (DBIE)

[3]. The dynamic response of the Rayleigh-damped

Bernoulli�Euler beam subjected to support motion

was also solved by using the quasi-static decom-

position method, Cesàro sum technique, and Stokes’
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transformation [4]. The hyperbolic type partial differ-

ential equation (PDE) for water-hammer equation and

open-channel transient flow equations can be trans-

formed to a characteristic form [5]. The reflection and

transmission of harmonic elastic waves in a bent bar

was investigated in Ref. [6]. Besides, the one-dimen-

sional wave problem in non-uniform waveguides were

solved and presented [7].

We may have interest to know how to capture the

physical behavior of the one-dimensional wave

problem theoretically, numerically, and experimen-

tally. Although it is important to derive the wave

solution, it is more important to educate students and

engineers to understand the physical significance of

wave phenomenon from the viewpoint of engineering

education. Symbolic computation software has been

employed to derive the solution of engineering

problem for several years. Kaw and Ho [8] used three

methods, the finite difference method, the finite

element method, and the boundary element method

to demonstrate the Lamé problem by using Maple.

Symbolic software may be convenient for students,

engineers, and researchers to work with computer

than with a pencil. But, there are only a few articles to

discuss how to combine education with software of

symbolic computation.

In this article, we will solve one-dimensional

wave problems using the D’Alembert’s solution,

the diamond rule, the image method and the series

solution. In the textbook, only static figures for each

time can be displayed. By employing the animation

capability of Mathematica, time-dependent behavior

will be captured. For simplicity, only one-dimensional

wave problem is considered here.

FORMULATION OF ONE-DIMENSIONAL
WAVE PROBLEMS

An Infinite String With a Mass, Spring,
and Damper at the Origion

The governing equation for the one-dimensional wave

equation of an infinite string is

c2 @
2uðx; tÞ
@x2

¼ @2uðx; tÞ
@t2

; �1 < x < 1 ð1Þ

where c and u(x,t) denote the wave velocity and

displacement, respectively. The initial displacement

f(x) and velocity j(x) conditions are

uðx; 0Þ ¼ fðxÞ ð2Þ

@uðx; 0Þ
@t

¼ jðxÞ ð3Þ

By employing the method of characteristic line, we

can assume the solution of wave equation as

uðx; tÞ ¼ Pðx þ ctÞ þ Qðx � ctÞ ð4Þ

where P(xþ ct) and Q(x� ct) are functions to match

initial conditions of Equations (2) and (3). The

functions P(xþ ct) and Q(x� ct) represent an out-

going-traveling wave and an incoming-traveling

wave, respectively. By satisfying Equations (2) and

(3) for Equation (4), we obtain the D’Alembert

solution

uðx; tÞ ¼ 1

2
½fðx þ ctÞ þ fðx � ctÞ� þ 1

2c

Zxþct

x�ct

jðsÞ ds

ð5Þ

The solution of the one-dimensional wave equation

has two groups of characteristic lines from Equation

(5), which can construct a parallelogram in the plane

of space and time as shown in Figure 1. By utilizing

the D’Alembert’s solution, we can obtain the relation-

ship of displacement of four vertexes, which is coined

the diamond rule as shown below:

uA þ uC ¼ uB þ uD ð6Þ

where uA, uB, uC, and uD denote the displacement of

the four points, A, B, C, and D, respectively. In order

to solve an infinite string with a spring, mass, and

damper at the origion, either the Laplace transform or

the convolution theorem can be used to derive the

exact solution. By using the method of the character-

istic line, the domain can be decomposed into four

regions. The diagram is shown in Figure 2. By

utilizing the diamond rule, the solution of each region

can be obtained, which is shown below:

uIðx; tÞ ¼ 1

2
½fðx � c1tÞ þ fðx þ c1tÞ�; ðx; tÞ 2 I

ð7Þ

Figure 1 Diamond rule u(A) + u(C) = u(B) + u(D):
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uIIðx; tÞ ¼ 1

2
½fðx þ c1tÞ � fð�x þ c1tÞ�

þ r t � x

c1

� �
; ðx; tÞ 2 II

ð8Þ

uIII ¼ r t þ x

c2

� �
; ðx; tÞ 2 III ð9Þ

uIV ¼ 0; ðx; tÞ 2 IV ð10Þ

where r(t) denotes the displacement of u(0,t). The

function r(t) can be obtained by matching the

condition of force equilibrium, which is

TII

@uII

@x
x¼0þj � TIII

@uIII

@x
x¼0�j ¼ m€rðtÞ þ x_rðtÞ þ krðtÞ

ð11Þ

where m, x, and k denote the constants of mass,

damping coefficient and spring constant, respectively,

while T denote the string tension

(TII ¼ r1c2
1; TIII ¼ r2c2

2). By using the Laplace trans-

form, Equation (11) can be transformed into

RðsÞ ¼ r1c2
1s

½ms2 þ ðr1c1 þ r2c2 þ xÞs þ k�FðsÞ ð12Þ

where R(s) and F(s) are the Laplace transforms of r(t)

and f(c1t), respectively. The exact solution r(t) can be

obtained by using either the Laplace transform in the s

domain or the convolution theorem in the time domain

together with Mathematica.

A Semi-Finite String With a Mass, Spring,
and Damper at the End

The governing equation is the same with Equation (1),

but the solution domain is 0< x<1. The initial

displacement and velocity are the same with Equations

(2) and (3), respectively. By using the method of the

characteristic line, the domain can be decomposed into

two regions as shown in Figure 3, where the solution of

each region of the semi-finite string can be obtained by

employing the diamond rule, which is shown below:

uIðx; tÞ ¼ 1

2
½fðx � ctÞ þ fðx þ ctÞ�; ðx; tÞ 2 I

ð13Þ

uIIðx; tÞ ¼ 1

2
½fðx þ ctÞ

� fð�x þ ctÞ� þ r t � x

c

� �
; ðx; tÞ 2 II

ð14Þ

where r(t) denotes the displacement of u(0,t). The

function of r(t) can be determined by employing the

condition of force equilibrium, which is

T
@u

@x
U

x¼0þ
�� ¼ m€rðtÞ þ x_rðtÞ þ krðtÞ ð15Þ

Figure 2 An infinite string with a mass, spring, and damper at the origin.
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By using Laplace transform, Equation (15) can be

transformed into

RðsÞ ¼ rc2s

½ms2 þ ðrc þ xÞs þ k�FðsÞ ð16Þ

where R(s) and F(s) are the Laplace transforms of r(t)

and f(ct). The exact solution of r(t) can be obtained by

using either the Laplace transform or the convolution

theorem together with Mathematica.

A Finite String

We employ three methods to solve initial boundary

value problems (IBVPs) (i.e., fixed or free), such as

the diamond rule, the image method and the series

solution. The governing equation is the same with

Equation (1), but the domain is 0< x<l. The initial

displacement and velocity are the same with Equa-

tions (2) and (3), respectively. The boundary con-

ditions (BC) are shown below:

uð0; tÞ ¼ uðl; tÞ ¼ 0 ð17Þ

The derivations for analytical solutions using the three

different methods are shown as follows.

Diamond Rule. By using the method of

characteristic line, we can decompose the space-

time (x,t) plane into several regions as shown in

Figure 4. The solution of each region can be obtained

by using the diamond rule, which is shown below:

uIðx; tÞ ¼ 1

2
½fðx þ ctÞ þ fðx � ctÞ�; ð18Þ

uIIðx; tÞ ¼ 1

2
½fðx þ ctÞ � fð�x þ ctÞ�; ð19Þ

uIIIðx; tÞ ¼ 1

2
½fðx � ctÞ � fð2l � ðx þ ctÞÞ�; ð20Þ

Figure 3 A semi-finite string with a mass, spring, and damper at the end.

Figure 4 Solution for each region using the diamond rule.
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uIVðx; tÞ ¼ � 1

2
½fð�x þ ctÞ

þ fð2l � ð�x þ ctÞÞ�:::
ð21Þ

The complete solution can be obtained by

successively employing the diamond rule.

Image Method. For a finite string, we employ the

image method to handle the wave problem with

fixed or free boundary. In order to satisfy the fixed

or free BC, we introduce an anti-symmetrical and

a symmetrical source, respectively. According to

Huygen’s principle, we use the image wave to match

the BC. Therefore, the finite string is imbedded into an

infinite string by using the image method as shown in

Figure 5. The solution can be obtained by utilizing

D’Alembert solution for the infinite string. We obtain

the solution by selecting the finite domain (0< x< l)

from the infinite string.

Series Solution. The series representation for the

displacement can be written as

uðx; tÞ ¼
X1
n¼1

TnðtÞXnðxÞ; 0 < x < l ð22Þ

where l is the length of the string, Tn(t) is the

generalized coordinate, and Xn(x) is the nth modal

shape satisfying the orthogonal property:

Z l

0

XmðxÞXnðxÞ dx ¼ 0; if n 6¼ m

Nn; if n ¼ m

�
ð23Þ

The generalized coordinate can be written as

TnðtÞ ¼
1

Nn

Z l

0

uðx; tÞXnðxÞ dx ð24Þ

By assuming the solution to be in a series form, we

have

uðx; tÞ ¼
X1
n¼1

dn cos
cnp

l
t

h i
þ en sin

cnp
l

t
h i� �

sin
npx

l

h i
ð25Þ

where the unknown coefficients can be determined by

dn ¼ 2

l

Z l

0

fðxÞ sin
npx

l

h i
dx ð26Þ

en ¼ 2

cnp

Z l

0

jðxÞ sin
npx

l

h i
dx ð27Þ

Figure 5 Diagram using the image method.
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A String Subjected to Support Motions

A string subjected to support motions is considered in

this subsection as shown in Figure 6. The governing

equation is the same with Equation (1), but the

solution domain is 0< x<l. The initial displacement

and velocity are the same with Equations (2) and (3),

respectively, but the initial displacement is null

(f(x)¼ 0) and the initial velocity is at rest

(j(x)¼ 0). The BCs of support motions are

uð0; tÞ ¼ aðtÞ ð28Þ

uðl; tÞ ¼ bðtÞ ð29Þ

where a(t) and b(t) are the support motions. In order to

transform the non-homogenous BC of the support to

be homogenous, the solution can be decomposed into

two parts by using the quasi-static decomposition

technique:

uðx; tÞ ¼ Uðx; tÞ þ
X1
n¼1

TnðtÞXnðxÞ; 0 < x < l

ð30Þ

where l is the length of the string or beam, U(x,t) is the

quasi-static solution, Tn(t) is the generalized coordi-

nate, and Xn(x) is the modal shape satisfying the

orthogonal property,

Z l

0

XmðxÞXnðxÞ dx ¼ 0; if n 6¼ m

Nn; if n ¼ m

�
ð31Þ

The generalized coordinate can be determined by

TnðtÞ ¼
1

Nn

Z l

0

uðx; tÞXnðxÞ dx ð32Þ

The quasi-static part U(x,t) in Equation (30) must

satisfy

@2Uðx; tÞ
@x2

¼ 0; 0 < x < l ð33Þ

and is subject to the following BCs:

Uð0; tÞ ¼ aðtÞ; Uðl; tÞ ¼ bðtÞ ð34Þ

By solving Equation (33) subject to BCs of Equation

(34), we have

Uðx; tÞ ¼ aðtÞ 1 � x

l

� �
þ bðtÞ x

l
ð35Þ

By using the approach of quasi-static decomposition

technique [3], we have

uðx; tÞ ¼
X1
n¼1

2l

cn2p2
sin

cnp
l

t
h i

½b0ð0Þð�1Þn � a0ð0Þ�
�

þ 2

np
½bð0Þð�1Þn � að0Þ� cos

cnp
l

t
h i

þ 2l

cn2p2

Z t

0

sin
cnp

l
ðt � tÞ

h i
½b00ðtÞð�1Þn

� a00ðtÞ� dtg sin
npx

l

� �
þ Uðx; tÞ ð36Þ

A Beam Subjected to Support Motions

The seismic response of a Rayleigh-damped Bernoul-

li�Euler beam subjected to multi-support motions as

shown in Figure 7 can be described by the following

governing equation:

rA€uðx; tÞ þ 2arA þ bEI
@4

@x4

� �
_uðx; tÞ

þEI
@4uðx; tÞ

@x4
¼ f ðx; tÞ; 0 < x < l ð37Þ

where the superimposed dot denotes a time derivative,

EI, rA, and l denote the flexural rigidity, mass per unit

length and length of the single-span beam of the

bridge, a and b are the coefficients of Rayleigh

damping. The initial displacement is null (f(x)¼ 0)

and the initial velocity is at rest (j(x)¼ 0). The BCs of

support motions are the same with Equations (28) and

(29). Other BCs are shown below:

@2uð0; tÞ
@x2

¼ @2uðl; tÞ
@x2

¼ 0 ð38Þ

The displacement of u(x, t) is a time-space function.

The solution can be decomposed into two parts by

using the concept of quasi-static and dynamic solution

Figure 6 A fixed string subjected to support motions.

Figure 7 A simply supported beam subjected to support

motions.
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as shown below:

uðx; tÞ ¼ Uðx; tÞ þ
X1
n¼1

TnðtÞXnðxÞ; 0 < x < l

ð39Þ

The quasi-static part u(x,t) must satisfy

@4Uðx; tÞ
@x4

¼ 0 ð40Þ

and the support motions are the same with Equation

(34). The BCs are shown below:

@2Uð0; tÞ
@x2

¼ @2Uðl; tÞ
@x2

¼ 0 ð41Þ

By solving Equation (40) subject to BCs of Equations

(34) and (41), we have

Uðx; tÞ ¼ aðtÞ 1 � x

l

� �
þ bðtÞ x

l
ð42Þ

The nth natural mode Xn(x) of the eigen-system is

XnðxÞ ¼ sin
npx

l

� �
; n ¼ 1; 2; . . . ð43Þ

and the corresponding natural frequencies on

are

on ¼ np
l

� �2

ffiffiffiffiffiffi
EI

rA

s
; n ¼ 1; 2; . . . ð44Þ

Substituting Equation (39) into Equation (37), we

obtain

X1
n¼1

r½€TnðtÞ þ 2xnon
_TnðtÞ þ o2

nqnðtÞ�XnðxÞ

¼ �r€Uðx; tÞ � 2ar _Uðx; tÞ ð45Þ

where the nth damping ratio xn is defined by

2xnon ¼ 2aþ bo2
n ð46Þ

By employing the orthogonal condition of Equation

(23), Tn(t) must satisfy the following second order

ordinary differential equation (ODE):

€TnðtÞ þ 2xnon
_TnðtÞ þ o2

nqnðtÞ ¼
€FnðtÞ

N
þ 2a _FnðtÞ

N

ð47Þ

where N¼ rl/2 and

FnðtÞ ¼ �
Z l

0

rUðx; tÞXnðxÞ dx ð48Þ

After considering the initial conditions (f(x)¼ 0 and

j(x)¼ 0), we have

NTnð0Þ ¼ �
Z l

0

rUðx; tÞXnðxÞ dx ¼ Fnð0Þ ð49Þ

N _Tnð0Þ ¼ �
Z l

0

r _Uðx; tÞXnðxÞ dx ¼ _Fnð0Þ ð50Þ

Thus, we can solve for Tn(t) according to Equations

(47), (49) and (50), that is

TnðtÞ ¼
FnðtÞ

N
� 1

Non

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q Z t

0

e�xnonðt�tÞ

sinðod
nðt � tÞÞ½o2

nFnðtÞ þ b _FnðtÞ� dt ð51Þ

where od
n ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
is the nth damping fre-

quency. Then, the series solutions for the displace-

ment is

uðx; tÞ ¼ Uðx; tÞ þ
X1
n¼1

TnðtÞ sin
npx

l

� �
ð52Þ

where Tn(t) is determined by Equation (51).

ILLUSTRATIVE EXAMPLES WITH
ANIMATION USING THE MATHEMATICA

Six examples are utilized to demonstrate the validity

of present approach.

Example 1: An Infinite String With a Mass,
Spring, and Damper at the Origin

The first example is an infinite string with a mass,

spring, and damper at the origin as shown in Figure 2.

The initial conditions are

uðx; 0Þ ¼ fðxÞ ¼ sinðxÞ; 2p � x � 3p
0; otherwise

�
_uðx; 0Þ ¼ jðxÞ ¼ 0

ð53Þ

The input data are as follows:

c ¼ 1 m=s; r ¼ 1 kg=m;m ¼ 1 kg; k ¼ 1 N=m; x ¼ 0:1

where c and r are the wave velocity and the density of

a unit length, respectively. By utilizing the diamond

rule, the solution in each region can be expressed

below:
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uIðx; tÞ ¼ 1

2
½sinðx � tÞ þ sinðx þ tÞ�; ðx; tÞ 2 I

ð54Þ

uIIðx; tÞ ¼
1

2
½sinðx þ tÞ � sinð�x þ tÞ�

þ rðt � xÞ; ðx; tÞ 2 II

ð55Þ

uIIIðx; tÞ ¼ rðt þ xÞ; ðx; tÞ 2 III ð56Þ

uIVðx; tÞ ¼ 0; ðx; tÞ 2 IV ð57Þ

where r(t)¼ u(0,t) is the time history of the unknown

displacement at the origin. To match the condition of

force equilibrium, we have

fðtÞ � 2r0ðtÞ ¼ m€rðtÞ þ x_rðtÞ þ krðtÞ ð58Þ

after substituting r¼ 1 (kg/m) and c¼ 1 (m/s). By

employing either the Laplace transform or the

convolution theorem using Mathematica, we can

solve r(t). The diagram of the solution is shown in

Figure 8a and b.

Example 2: Two Semi-Infinite Strings
Joined at Origin

The second example is an infinite string with

two media separated at the origin as shown in

Figure 9. The initial conditions are the same with

Equation (53). The input data are as follows:

c1 ¼ 1 m=s; c2 ¼ 2 m=s; r1 ¼ 1 kg=m;r2 ¼ 2 kg=m,

where c and r are the wave velocity and the density of

an unit length, respectively. By utilizing the diamond

rule, the solution in each region can be expressed

below:

Figure 8 (a) Diagram of the solution of an infinite string (t¼ 0�5). (b) Diagram of the

solution of an infinite string (t¼ 6�11).
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uIðx; tÞ ¼ 1

2
½sinðx � tÞ þ sinðx þ tÞ�; ðx; tÞ 2 I

ð59Þ

uIIðx; tÞ ¼ 1

2
½sinðx þ tÞ � sinð�x þ tÞ� þ rðt � xÞ;

ðx; tÞ 2 II ð60Þ

uIIIðx; tÞ ¼ r t þ x

2

� �
; ðx; tÞ 2 III ð61Þ

uIVðx; tÞ ¼ 0; ðx; tÞ 2 IV ð62Þ

where r(t)¼ u(0,t) is the time history of the unknown

displacement at the origin. To match the condition of

force equilibrium, we have

rðtÞ ¼ 1

5
fðtÞ ð63Þ

after substituting c1 ¼ 1 m=s; c2 ¼ 2 m=s; r1 ¼ 1 kg=
m;r2 ¼ 2 kg=m. Then we can obtain the function of

r(t). The diagram of the solution is shown in

Figure 10a and b. For the parameter study of

impendence ratio, another case of ratio r1c1/r2c2¼
10 is also plotted in Figure 11a and b.

Example 3: A Semi-Infinite String With a
Mass, Spring, and Damper at the End

The third example is a semi-infinite string with a

mass, spring, and damper at the end. The initial

conditions are the same with Equation (53).

The input data are as follows:

c¼1 m=s; r¼1 kg=m;m ¼ 1 kg; k¼1 N=m; x¼0:2:

By utilizing the diamond rule, the solution of each

region can be similarly expressed

uIðx; tÞ ¼ 1

2
½sinðx � tÞ þ sinðx þ tÞ�; ðx; tÞ 2 I

ð64Þ

uIIðx; tÞ ¼ 1

2
½sinðx � tÞ � sinð�x þ tÞ� þ rðt � xÞ;

ðx; tÞ 2 II ð65Þ

To match the condition of force equilibrium, we have

fðtÞ � r0ðtÞ ¼ m€rðtÞ þ x_rðtÞ þ krðtÞ ð66Þ

By employing either the Laplace transform or the

convolution theorem using the Mathematica symbolic

software, we can solve the function of r(t), which

satisfies the second order ODE. Therefore the diagram

of the solution can be shown in Figure 12a and b by

employing Mathematica software.

Example 4: A Finite String With Fixed-End
Boundary Conditions

The fourth example is a finite string subject to the

fixed-end BCs

uð0; tÞ ¼ 0

uðl; tÞ ¼ 0
ð67Þ

and initial conditions

uðx; 0Þ ¼ fðxÞ ¼ x � 1; 1 � x < 2

3 � x; 2 � x < 3

�
_uðx; 0Þ ¼ jðxÞ ¼ 0

ð68Þ

The problem can be solved by utilizing the image

method. In order to satisfy the BCs, we can obtain the

image part, as shown below:

fi
1ðxÞ ¼

�3 � x; �3 � x < �2

x þ 1; �2 � x < �1;

�
ð69Þ

fi
2ðxÞ ¼

9 � x; 9 � x < 10

x � 11; 10 � x < 11;

�
ð70Þ

fi
3ðxÞ ¼

x þ 11; �11 � x < �10

�9 � x; �10 � x < �9;

�
ð71Þ

fi
4ðxÞ ¼

x � 13; 13 � x < 14

15 � x; 14 � x < 15

�
::: ð72Þ

where the superscript i denote the image part and the

subscript denotes the number of times for images.

Then, we employ the D’Alembert solution for an

infinite string to obtain the solution, which is shown in

Figure 13a and b.

Example 5: A String Subjected to
Support Motions

The fifth example is a string subjected to support

motions. The initial conditions are

Figure 9 An infinite string with two-media.
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Figure 10 (a) Diagram of solution of an infinite string with two-media (r2c2/r1c1¼ 4)

(t¼ 0�5). (b) Diagram of solution of an infinite string with two-media (r2c2/r1c1¼ 4)

(t¼ 6�11).
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Figure 11 (a) Diagram of solution of an infinite string with two-media (r2c2/r1c1¼ 10)

(t¼ 0�5). (b) Diagram of solution of an infinite string with two-media (r2c2/r1c1¼ 10)

(t¼ 6�11).
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Figure 12 (a) Diagram of the solution of the semi-infinite string (t¼ 0�9). (b) Diagram

of the solution of the semi-infinite string (t¼ 10�19).
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Figure 13 (a) Diagram of the solution of a finite string by using the image method

(t¼ 0�5). (b) Diagram of the solution of a finite string by using the image method

(t¼ 6�11).
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uðx; 0Þ ¼ 0; 0 < x < l

_uðx; 0Þ ¼ 0; 0 < x < l
ð73Þ

and the BCs of the in-phase support motions are

uð0; tÞ ¼ sinðtÞ
uðl; tÞ ¼ sinðtÞ ð74Þ

The input data are given by c¼ 1 m/s, l¼ 5 m

Figure 14 (a) In-phase response for a string subjected to support motions (t¼ 0�5).

(b) In-phase response for a string subjected to support motions (t¼ 6�11).
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Figure 15 (a) In-phase response for a beam subjected to support motions (t¼ 0�5).

(b) In-phase response for a beam subjected to support motions (t¼ 6�11).
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According to Equation (35) and BCs, the quasi-static

[3] part solution can be obtained as shown below:

Uðx; tÞ ¼ sinðtÞ ð75Þ

According to Equation (36), the total solution can be

obtained as

uðx; tÞ ¼
X1
n¼1

10 sinðtÞ þ ðð�1Þn � 1Þ sinðnpt=5Þ½ �
n2p2

sin
npx

5

� �
þ Uðx; tÞ ð76Þ

The animation can be produced by using the

Mathematica, which is shown in Figure 14a and b.

Example 6: A Beam Subjected to
Support Motions

The sixth example is a beam subjected to support

motions. The initial conditions and the BCs of the

support motion are the same with Equations (73) and

(74), respectively. The input data are given as

c ¼ 1 m=s; l ¼ 60 m;EI ¼ 2:45 � 109Nm2

rA ¼ 2; 400 kg=m; a ¼ 0:1381; b ¼ 0

According to Equation (42) and the BC, the quasi-

static part [3] solution can be obtained as the same

with Equation (75). In order to match the eigen-

system, the nth natural mode Xn(x) is expressed as

XnðxÞ ¼ sin
npx

l

� �
¼ sin

npx

60

� �
; n ¼ 1; 2; . . .

ð77Þ

and the nth natural frequencies are

on ¼ np
l

� �2

ffiffiffiffiffiffi
EI

rA

s
¼ 0:28066ðnpÞ2; n ¼ 1; 2; . . .

ð78Þ

According to Equations (46) and (47), we can obtain

a second order ODE

€TnðtÞ þ 2xnon
_TnðtÞ þ o2

nqnðtÞ ¼
€FnðtÞ

N
þ 2a _FnðtÞ

N

ð79Þ

Then, we solve the second order ODE to obtain the

function Tn(t), which is shown below:

TnðtÞ ¼
FnðtÞ

72; 000
� 1

72; 000od
n

Z t

0

e�xnonðt�tÞ

sin½od
nðt � tÞ�½o2

nFnðtÞ� dt ð80Þ

where

FnðtÞ ¼
144; 000

np
½ð�1Þn

sinðtÞ � sinðtÞ� ð81Þ

od
n ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:0498562

n2

� �2
s

ð82Þ

Therefore, the animation of solution of a beam subject

to support motions is shown in Figure 15a and b.

All Mathematica programs can be obtain in http://

ind.ntou.edu.tw/�msvlab/.

CONCLUSIONS

In this article, we have solved the one-dimensional

wave problems by using the D’Alembert solution in

conjunction with the diamond rule for infinite and

semi-infinite strings with mass, damper, and spring.

For the finite-string problems, three approaches, the

diamond rule, the image method and the series

solution, were employed to derive the analytical

solutions. Besides, support motion problems for the

string and beam were also solved by using the quasi-

static decomposition method. All the results were

shown in animation by using the Mathematica

software. This display may be useful for students

and engineers to capture the wave phenomena. Based

on the animation, students can easily capture the

sensitivity of response due to each parameter, for

example, m, c, k, x, EI, and impedance ratio. This

article provides the animation by using the Mathema-

tica software. This can help teachers in the classroom

using the multi-media equipment. We can provide

animations where dynamic phenomenon can be well

captured by students.
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