Clairaut＇s 微分方程式：

$$
y=x y^{\prime}-\frac{1}{4} y^{\prime 2}
$$

General solution：

$$
y=x c-\frac{1}{4} c^{2}, \text { for any } c
$$

Singular solution $y=y(x)$ by parameter representation

$$
x=x(c), y=y(c)
$$

Two conditions must be satisfied if $(x(c), y(c))$ is intersection point with the same tangent line

$$
\begin{align*}
& y(c)=x(c) c-\frac{1}{4} c^{2} \tag{1}\\
& \left.\frac{d y}{d x}\right|_{(x(c), y(c))}=c
\end{align*}
$$

By considering

$$
\left.\frac{d y}{d x}\right|_{(x(c), y(c))}=\left.\frac{d y(c) / d c}{d x(c) / d c}\right|_{(x(c), y(c))}=c \rightarrow y^{\prime}(c)=c x^{\prime}(c)
$$

Eq．（1）can be differentiated with respect to c ，we have

$$
y^{\prime}(c)=x^{\prime}(c) c+x(c)-\frac{1}{2} c
$$

Therefore，we have

$$
x(c)=\frac{1}{2} c, y(c)=\frac{1}{4} c^{2}
$$

The singular solution is $y=x^{2}$ ．
direct solution for the ODE：
Setting $y^{\prime}=p$ ，we have

$$
\begin{aligned}
& y=x p-\frac{1}{4} p^{2} \\
& \frac{d y}{d x}=p+x p^{\prime}-\frac{1}{4} 2 p^{\prime} \\
& p^{\prime}\left(x-\frac{1}{2} p\right)=0 \\
& p^{\prime}=0 \rightarrow p(x)=c \rightarrow y(x)=c x+k_{1} \\
& p=2 x \rightarrow y(x)=x^{2}+k_{2}
\end{aligned}
$$

where k_{1} and k_{2} can be determined by substituting into Clairaut＇s equation．

Exercise：$y=x p-e^{p}$ where $p=y^{\prime}$ ．Solve the general solution and singular solution．
海大河工系陳正宗 工數（一）
存檔：cla1．ctx 建檔：Sep．／8／＇96

