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In this paper, the Green’s function for the annular Laplace problem is first derived by using the image
method which can be seen as a special case of method of fundamental solutions. Three cases,
fixed-fixed, fixed-free and free-fixed boundary conditions are considered. Also, the Trefftz method is
employed to derive the analytical solution by using T-complete sets. By employing the addition
theorem, both solutions are found to be mathematically equivalent when the number of Trefftz base and
the number of image points are both infinite. On the basis of the same number of degrees of freedom,
the convergence rate of both methods is compared with each other. In the successive image process, the
final two images freeze at the origin and infinity, where their singularity strengths can be analytically
and numerically determined in a consistent manner.
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1. Introduction

Trefftz in 1926 presented the Trefftz method for solving
boundary value problems (BVPs) by superimposing the functions
satisfying the governing equation, although various versions of
the Trefftz method, e.g., direct and indirect formulations have
been developed [1]. The unknown coefficients are determined by
matching the boundary condition. Many applications to the
Laplace equation [2], the Helmholtz equation [3], the Navier
equation [4,5], and the biharmonic equation [6] were done.
Until the recent years, the ill-posed nature in the method was
noticed [7].

In the potential theory, it is well known that the method of
fundamental solutions (MFS) can solve potential problems when a
fundamental solution is known. This method was proposed by
Kupradze [8] in Russia. Extensive applications in solving a broad
range of problems such as potential problems [9], acoustics [10],
elasticity [8] and biharmonic problems (plate) [11-13] have been
investigated. The MFS can be viewed as an indirect boundary
element method (BEM) with concentrated sources instead of
boundary distributions. The initial idea is to approximate the

* Corresponding author at: Department of Harbor and River Engineering,
National Taiwan Ocean University, Keelung 20224, Taiwan. Tel.:+886 2 24622192
x6177; fax: +886224632375.

E-mail address: jtchen@mail.ntou.edu.tw (J.-T. Chen).

0955-7997/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.enganabound.2008.10.003

solution through a linear combination of fundamental solutions
with sources located outside the domain of the problem. More-
over, it has certain advantages over BEM, e.g., no singularity and
no boundary integrals are required. However, ill-posed behavior is
inherent in the regular formulation. The Trefftz method and MFS
are both mesh reduction methods.

The Green’s function has been studied and applied in many
fields by mathematicians as well as engineers [14,15]. The Green’s
functions are useful building blocks for attacking more realistic
problems. But only a few of simple regions allow a closed-form
Green’s function for the Laplace equation. For example, one
aperture or circular sector in the half-plane, infinite strip, semi-
strip or infinite wedge can be mapped by elementary analytic
functions, making their Green’s function expressed in a closed
form. A closed-form Green’s function for the Laplace equation by
using the mapping function becomes impossible for the compli-
cated domain except for some simple cases. Numerical Green'’s
function has received attention from BEM researchers by Telles
et al. [16-18]. Melnikov [19-21] utilized the method of modified
potentials (MMP) to solve BVPs from various areas of computa-
tional mechanics. Later, Melnikov and Melnikov [22] studied in
computing Green’s functions and matrices of Green’s type for
mixed BVPs stated on 2-D regions of irregular configuration. For
the image method, Thomson [23] proposed the concept of
reciprocal radii to find the image source to satisfy the homo-
geneous Dirichlet boundary condition. Chen and Wu [24]
proposed an alternative way to find the location of image by
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employing the degenerate kernel. Boley [25] analytically con-
structed the Green'’s function by using the successive approxima-
tion. Adewale [26] proposed an analytical solution for an annular
plate subjected to a concentrated load which also belongs to the
Green’s function. Chen and Ke [27] have constructed the Green'’s
function of Helmholtz operator domain by using the null-field
integral equation derived from the Green’s third identity. The
Green’s function of a circular ring has been solved using complex
variable by Courant and Hilbert [28]. However, it is limited to
extend to 3-D space.

Mathematical studies on MFS have been investigated by some
researchers. Schabck [29] found that the MFS with far field
singularity behaves like the Trefftz base of harmonic polynomials.
Bogomolny [30] studied the stability and error bound of MFS. Li
et al. [31] used the effective condition number to study the
collocation approaches of MFS and Trefftz method. He found that
the condition number of MFS is much worst than that of the
Trefftz method. Although the Trefftz method and MFS have a long
history individually, the link between the two methods was not
discussed in detail in the literature until Chen et al.’s paper [32].
They proved the equivalence between the Trefftz method and the
MFS for Laplace and biharmonic problems containing the circular
domain. The key point is the use of the degenerate kernel or so-
called the addition theorem. They only proved the equivalence by
demonstrating a simple circle with angular distribution of
singularity to link the two methods. However, an extension study
for a doubly connected problem is not trivial. This is the main
concern of this paper. Here, we put singularities along the radial
direction in the method of image.

In this paper, we focus on proving the mathematical equiva-
lence on the Green’s functions for annular Laplace problem
derived by using the Trefftz method and MFS. Three cases
fixed-fixed, fixed-free and free-fixed boundary conditions are
considered. By employing the image method and addition
theorem, the equivalence of the two methods will be proved
when the number of image points and number of the Trefftz bases
are infinite. The image method is seen as a special case of MFS,
since its image singularities locate outside the domain. The
convergence rate on the basis of same number of degrees of
freedoms for the Trefftz method and MFS is also discussed. The
solution by using the image method also indicates that a free
constant is required to be complete for the solution which is
always neglected in the conventional MFS.

2. Construction of the Green’s function for an annular case by
using the image method

For a 2-D annular problem as shown in Fig. 1, the Green’s
function satisfies

VA6, ) =0x—0), xeQ, 1)

Fig. 1. Sketch of an annular problem subject to a concentrated load.

where Q is the domain of interest and ¢ denotes the Dirac-delta
function for the source at {. For simplicity, the Green’s function is
considered to be subjected to the Dirichlet boundary condition
G(x,{) =0, xeB;UBs,, (2)
where B; and B, are the inner and outer boundaries, respectively.
As mentioned in [24], the interior and exterior Green’s functions
can satisfy the homogeneous Dirichlet boundary conditions if the
image source is correctly selected. The closed-form Green’s
functions for both interior and exterior problems are written to
be the same form
Gx,0)=Inlx—{|—Inlx—{|+Ina—InR;, xeQ, (3)
where a is the radius of the circle, { = (R;,0), R; is the distance
from the source to the center of the circle, {’ is the image source
and its position is at (a?/R;,0) as shown in Fig. 2.

Now let us extend a circular case to an annular case. An
annular case can be seen as a combination of interior problem and
exterior problem as shown in Fig. 3. By matching the homo-
geneous Dirichlet boundary conditions for the inner and outer
boundaries (fixed-fixed case), we introduce image points {; and
{5, respectively. Since {; results in the nonhomogeneous boundary
conditions on the outer boundary, we need to introduce an extra
image point (3. Similarly, {; results in the nonhomogeneous
boundary conditions on the inner boundary and an additional
image point {4, are also required. By repeating the same
procedures, we have a series of image sources locating at
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Fig. 2. Sketch of position of image point (a) interior case and (b) exterior case.
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a b

Fig. 3. An annular problem composed of (a) interior and (b) exterior cases.
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Fig. 4 and Table 1 depict a series of images for the three
annular problems. We consider the fundamental solution U(s,x)
for each source singularity which satisfies

.y

V2U(x,s) = 218(x — 5). (6)
Then, we obtain the fundamental solution as follows:
Ux,s) =Inr, (7)

where r is the distance between s and x (r=|x—s|). Based on the
separable property of addition theorem or degenerate kernel, the
fundamental solution U(x,s) can be expanded into series form by
separating the field point x(p,¢) and source point s(R,0) in the
polar coordinate [33]

Ip . _ =iy _
UR,0;p,¢)=1InR mZ:1 m(R) cos m(0 — ¢), R=p,
U(s,x) = 1

UER,0;p,¢)=1np — 21 E(S) cos m(® — ¢), R<p,
(8)

where the superscripts of I and E denote the interior and exterior
regions, respectively. It is noted that the leading term and the
numerator in the above expansion involve the larger argument to
ensure the log singularity and the series convergence, respec-
tively. In order to iteratively match the inner and outer homo-
genous Dirichlet boundary conditions, combination of all the
images yields a part of the Green’s function

1 N
Gm(x,0) = o Inx —{| - 1\51_51010 > An jx = Caisl 410 [x — 4o
i1

—In |x = {4i1] = In |x — L4 |- (9)

2.1. Satisfaction of boundary conditions using two singularity
strengths at the origin and infinity

After successive image process, the final two image locations
freeze at the origin and infinity. There are two strength of
singularity to be determined. Therefore, the total Green’s function

Fig. 4. The images for an annular problem.

is rewritten as

-1 . .
G, () = &L“QO{E {ln X —=C = Anjx = g3l +Injx — (g o

i=1

—In|x — {411 —Injx — {4) + c(N) + Cl(N)lnp} } (10)

where ¢(N) and d(N) are unknown coefficients which can be
analytically and numerically determined by matching the inner
and outer boundary conditions.

After matching the inner and outer boundary conditions, the
numerical values of unknown c(N) and d(N) are determined as
shown in Figs. 5-7 for fixed-fixed, fixed-free and free-fixed cases,
respectively. It is found that all the numerical values in Figs. 5-7
match well with the analytical formulae of ¢(N) and d(N) in the
Table 1 derived by using the degenerate kernel.

2.2. Satisfaction of the boundary condition by using interpolation
functions

Although G,(x,{) is the main part of the Green’s function.
Unfortunately, G,,(x,{) in Eq. (9) cannot satisfy both the inner and
outer boundary conditions of Gp(xq,() = Gn(xp() =0, where
Xq = (a,9), xp = (b,¢), 0< ¢ <2m. In order to satisfy both the inner
and outer boundary conditions, an alternative method is intro-
duced such that we have

- Inp—Ina
Gx,0) = Gnx,0) — (m> Gim(Xp, 0)
Inb-1Inp
- <m>cm(xa,5), a<p<b, (11)

where (Inp-—Ina)/(Inb—-Ina) and (Inb—Inp)/(Inb—Ina) are the
interpolation functions. Therefore, Eq. (11) can be rewritten as

-1 -
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after expanding the fundamental solutions of G, in Eq. (9) by
using the addition theorem. As N approaches infinity (i.e. many
image points), limy_, ..(a?/b?)N approaches zero such that Eq. (12)
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Trefftz and image solutions for the (a) fixed-fixed, (b) fixed-free and (c) free-fixed annular Green’s functions.
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Fig. 5. Values of c(N) and d(N) for the fixed-fixed case.
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Fig. 6. Values of c(N) and d(N) for the fixed—free case.

can be reduced to
(1 R:
GCx, 0 = Al/gjo]o{ﬂ {ln x = — 2NlnE
InR; —Ina Inb —InR;
7<lnb—lna) Inb - <1nb—1na> lnp}
1 N
—5= Zj(ln % = Caizal + In|x — C4ios
i=
~Ini = Lot = Infx = ) (13)
where the dependency of ¢ in Eq. (12) is suppressed by the term

(a/b)N-0 as (a/b)<1 and N— . Eq. (13) indicates that not only
image singularities at {4;_3, {4i_2, {4i_1 and {4, ieN, but also one
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Fig. 7. Values of ¢(N) and d(N) for the free-fixed case.

singularity of ((Inb—InR;)/(Inb—Ina))lnp at the origin and two
rigid body terms of 2NIn(R;/a) and ((InR;—Ina)/(Inb—Ina))Inb for
the fixed-fixed case are required. The Green’s function in Eq. (13)
satisfies the governing equation and boundary conditions at the
same time. It is found that a conventional MFS loses a free
constant and completeness may be questionable. This also
supports that the free constant is important especially in 2-D
problem which has been pointed out by Saavedra and Power [33].
Similarly, the image method can be extended to solve fixed-free
and free-fixed cases with respect to the inner and outer boundary
conditions, respectively. All the series solutions are analytically
derived in Table 1 not only for fixed-fixed but also for fixed-free
and free-fixed cases.

It is worthy of noting that the mathematical equivalence
between coefficients (c(N) and d(N)) and interpolation functions
can be proved by using the degenerate kernels for three boundary
conditions as shown in Table 1. Two ways by using the numerical
method and analytical derivation are provided to determine the
unknown coefficients. Also, numerical data and analytical for-
mulae are given in Figs. 5-7. It is found that the two equations in
Egs. (10) and (11) are obtained from two different ways. It is
proved that they have the same analytical content and numerical
results.

The analytical Green’s function is shown in Eq. (13) when
N approaches infinity. Readers may wonder the term of infinity,
2NIn(R¢/a), as N approaches infinity. A general existence for
Eq. (13) can be understood in the following Section 4 which
proves the equivalence between the Trefftz solution and Eq. (13).
However, we must mention that the sum of infinity term,
S 1(In|x—Cai—sl+Inlx—C4io] —In|x—C4i_q]—Injx—{4)), and minus
infinity (2NIn(R:/a)) yields a finite value as N approaches infinity
in the numerical experiment. A very similar case is shown below:
(N _,(1/m)—InN) = 7, where y is a finite value of Euler constant.

3. Derivation of the Green'’s function for an annular case by
using the Trefftz method

The problem of annular case in Fig. 8 can be decomposed into
two parts. One is infinite plane with a concentrated source
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b

Fig. 8. Sketch of superposition approach. (a) An infinite plan with a concentration
source and (b) an annular case subject to specified boundary conditions.

(fundamental solution) in Fig. 8(a) and another is annular circles
subject to specified boundary conditions as shown in Fig. 8(b). The
first part solution can be obtained from the fundamental solution
as follows:

1n|x {|
27

In the image method, all the singularities are put outside the
domain to satisfy the specified BC of the second part solution. This
is the reason why we call the image method is a special case of
MFS. Here, the second part is solved by using the Trefftz method.
The solution can be superposed by using the Trefftz base as shown
below:

Gr(x,0) = (14)

Nr
GT(X, {) = ZC]'¢]‘ (15)
=
where @; is the jth T-complete function and Ny is the number of T-
complete function. Here, the T-complete functions are given as 1,
p™cosmep and p™ sinme for the interior case and Inp, p~" cos m¢
and p~"sinmg¢ for the exterior case. The Green’s function can be
represented by

Gr(x,0) =po +Donp + > [Pmp™ + Pmp ™) cos m¢

m=1
+(@mP™ + Gmp~™) sin m¢) (16)

where x = (p,¢), Po, Po» DPm» Pm» qm and g, are unknown
coefficients. By matching the boundary conditions, we substitute
x = (a,) and x = (b,¢) in Eq. (15) to determine the unknown
coefficients. Then, the series-form Green’s function is obtained by
superimposing the solutions of G{(x,{) and G#{x,{) as shown below

Inix -
T 2n
a m+1
S [ e

pm am+1 B .
+<bm—_1qm+p—mqm> sin mqﬁ}, 17)

G(x,0) = — (bInbpy + aln p py)

where the unknown coefficients are obtained,

Ina —InR;
Do 2nb(Ina — Inb)
Do [~ Inb—1InR; (°

2na(lnb — Ina)

b™" cos mO[b™ (R /b)™ — a™(a/R;)™]
Pm | b*™ — a2myx B
{ﬁm } ~ ) b™cos mO[b™(a/R)™ — a™(R; /D)™ [’ m=123,...
a(b®™ — a2myr

(19)

b™! sin mO[b™ R, /b)™ — a™(a/R)™]
dm (b*™ — a2myn
{qm } =) b"sin mob™(a/Ry)™ — a™Re/b)™ [’
a(b®™ — a2y

m=1,2,3,....

(20)

Therefore, the series-form Green’s functions are obtained in
Table 1 for the three cases. For simplicity and without loss of
generality, we prove the equivalence for the fixed-fixed case in
the next section.

a

b .........-...._....

C .O'........'o

Fig. 9. Optimal locations for the MFS [35]. (a) Expansion, (b) circle and (c) lump
(optimal case).
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4. Mathematical equivalence between the MFS
and Trefftz method

4.1. Method of fundamental solutions (image method)

The image method can be seen as a special case of MFS, since
its singularities are located outside the domain for the second-
part solution in Fig. 8(b). The Green’s function of Eq. (13) can be
expanded into series form by separating the field point x(p,¢) and
source point s(R,0) for the fundamental solution in the polar
coordinate of Eq. (8) as shown below

1 InR; —Ina Inb —InR;
G(X’C):ﬁ{lnlx_a_lnbflnalnb_1nb,1na }
sl 6
Zn;n;mKCmq + p
()" () - 21
( P ) (C4i> }COS m© ~ ). (21)

Without the loss of generality, the source in the annular domain
can be chosen as { = (R;,0). By using Eqgs. (4) and (5), the series
results in four geometric series with the common ratio of a?/b?
which is less than one in Eq. (13) and can be rearranged into

=0 11 RE™p?M 4 ¥ — 2RI — g2 p2m
2n 2nf=m RE"p"‘(bzm — a2m)

1 Inb—InR;
" 2nInb—1Ina

Gx,0) =

cos m¢o

1 InR; —Ina

" 2nInb—Ina Inb

Inp, a<p<b, (22)

Annular Green’s function

Trefftz method MFS (image method)
& J

Q> Addition theorem @

Discrete image source
Singularity outside the domain

Mathematical equivalence

Fig. 10. Equivalence between the Trefftz method and MFS (image method).

after expanding all the image singularities of In functions.
Regarding the optimal location for singularities of MFS for the
second part solution in Fig. 8(b), it is interesting to find that the
optimal location may not be the expansion type of Fig. 9(a) or
angular distribution of Fig. 9(b), but a lump singularity in one
radial direction as shown in Fig. 9(c) as mentioned by Alves and
Antunes [35]. In this paper, our image location in the MFS only
lumps on the radial direction which agrees with the optimal
location in [34,35].

4.2. The Trefftz method

Since the angle of source location can be set to zero without
loss of generality, the coefficients of Eqgs. (19) and (20) can be
simplified to

(i) -

b b™ R, /D)™ — a™(a/R)™
(b*™ — a2myz
b"b™(@a/Re)™ — a™R:/bY™ [’

m:1,2,3,...,

a(b®™ — a2myg

b

@ Source point

@ Collocation point

Fig. 11. Sketches of (a) the Trefftz method, (b) the image method (special MFS,
radial distribution of singularities) and (c) conventional MFS (angular distribution
of singularities).
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Am 0 After comparing Eq. (22) with Eq. (25), it is found that the two
{ G } = { 0 }’ m=123,.... (24) solutions, Egs. (13) and (17) have been proved to be mathematically
equivalent by using the addition theorem when the number of

images and the number of Trefftz bases are both infinite. The
equivalence of solutions using the Trefftz method and MFS (image
method) is summarized in a flowchart of Fig. 10. Similarly, the

Then, the Green’s function in Eq. (17) can be rewritten as

Gop)= M-l Lil [R?mpzm +‘12'"bzm2— @?mRE" — a?mp?m) mo mathematical proof of the equivalence between Trefftz and MFS
mo2mimm RZ'pmb™" —a’m) solutions can be extended to fixed-free and free-fixed cases
_ 1InR-Ina _ 1Inb-InR np, a<p<b (25) without any difficulty. All the results are shown in Table 1. It is
2nlnb—Ina 2nlnb—1Ina 7 TP noted that Eq. (22) is obtained from Eq. (13) by expanding the In

a a

®

-10 T T
-10 -5 0 5 10

Fig. 12. Contour plot for the analytical solutions (fixed-fixed boundary condition). Fig. 13. Contour plot for the analytical solutions (fixed-free boundary condition).
(a) The Trefftz method and (b) the image method. (a) The Trefftz method and (b) the image method.
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singularity using the addition theorem. Eq. (22) is found to be
equivalent to the solution of Trefftz method in Eq. (25). Existence
of Eq. (13) as N— oo and series convergence of Trefftz solution of
Eq. (25) will be demonstrated in the next section.

5. Illustrative example and discussions

For simplicity, an annular problem subject to the Dirichlet
boundary condition is considered here where the source is located

%
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=

_5_ /
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b
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0 | ‘V |
-5 K /
—10 T T T
-10 -5 0 5 10

Fig. 14. Contour plot for the analytical solutions (free-fixed boundary condition).
(a) The Trefftz method and (b) the image method.
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Fig. 15. Pointwise convergence test for the potential u(6, §) by using various
approaches.

at { = (7.5,0). The two radii of inner and outer circles are 4.0 and
10.0, respectively. Although the Trefftz solution and MFS solution
(image method) are proved to be mathematically equivalent in the
infinite dimension (N— oo and Nr— o), they are not fully
equivalent in the error analysis. The convergence rate under the
same number of degrees of freedoms is an interesting topic. Three
approaches, (a) the Trefftz method, (b) special MFS (images
method) and (c¢) MFS with angular singularities (conventional
MFS), are considered here. Their distributions of source and
collocation points are shown in Fig. 11. The contour plots of
analytic solutions using the Trefftz method and image method are
shown in Figs. 12-14 for fixed-fixed, fixed-free and free-fixed
cases, respectively. Fig. 15 shows the potential at the point (6,7/3)
versus the number of terms by using various approaches. It is
found that the convergence rate of image method is better than
those of the Trefftz method and conventional MFS. However, the
accuracy of Trefftz method is the worst. Fig. 16 shows the normal
derivatives along outer and inner boundaries. The norm error of
normal derivatives for outer and inner boundaries versus the
number of terms (Ny = M) is shown in Fig. 17. Also, the accuracy of
the image method is better than those of the conventional MFS
and the Trefftz method.

In this example, all the three figures (Figs. 15-17) indicate that
the image method is more efficient than MFS with angular
singularities and the Trefftz method. The reason can be explained
that source points in MFS has been optimally selected by using the
image concept. According to the addition theorem, the Trefftz
bases are all imbedded in the degenerate kernel. Trefftz bases and
Inr singularity with extra constant are both complete for
representing the solution. Although it is proved that the solution
derived by using the image method and the Trefftz method are
mathematically equivalent when the number of degrees of
freedom is infinite, their numerical efficiencies are different on
the same number of degree of freedoms. Here, we find that the
accuracy of radial distribution of singularity is better than that of
the angular distribution in the MFS. Also, we find that the bases of
MFS are more efficient than that of the Trefftz method in the
fixed-fixed cases.



J.-T. Chen et al. / Engineering Analysis with Boundary Elements 33 (2009) 678-688 687

a
0.12
0.08 —
ElE  0.04 —
0 —
————— Image method (N = 4), Eq.(13)
- ——=——== Trefftz method (N = 4), Eq.(17)
—— —— Conventional MFS (N =4)
Analytical solution (N = 100)
JCC A e B
0 04081216202428323.640444852566.064
¢
0.04
0 — ——
-0.04 —
S‘ =
Q|
-0.08 —
-0.12 —
————— Image method (N = 4), Eq(13)
| ——=——== Trefftz method (N = 4), Eq(17)
—— —— Conventional MFS (N =4)
o1 Analytical solution (N = 100)
B B B B D I B B

0 04081216202428323640444852566.064
¢

Fig. 16. Normal derivatives along the inner and outer boundaries by using various
approaches. (a) Outer boundary and (b) inner boundary.

6. Concluding remarks

In this paper, not only the image method (a special MFS) but
also the Trefftz method were employed to solve the Green’s
function of annular Laplace problem. Three cases, fixed-fixed,
fixed-free and free-fixed were considered. The two solutions
using the Trefftz method and MFS were proved to be mathema-
tically equivalent by using addition theorem or so-called degen-
erate kernel. On the basis of finite number of degrees of freedoms,
the results of image method are found to converge faster than
those of the Trefftz method and MFS with angular singularities.
Also, the solution of image method shows the existence of the free
constant which is always overlooked in the conventional MFS.
Finally, we also found the final two frozen image points at the
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Fig. 17. [? norm error ([3™|u(x)—ii(x)|>d0) versus number of terms. (a) Outer
boundary and (b) inner boundary.

origin and infinity where their strengths can be determined
numerically and analytically in a consistent manner.
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