Boundary Element Method

H．－K．Hong and J．T．Chen
due 30／12 morning，Fall 1994

HW No． 1

1．For the interior problem，we have derived the dual boundary integral equa－ tions（DBIE）for a corner as follows

$$
\begin{aligned}
\alpha u(x) & =\text { C.P.V. } \int_{B} T(s, x) u(s) d B(s)-\text { R.P.V. } \int_{B} U(s, x) t(s) d B(s) \\
\alpha t^{-}(x)+\sin (\alpha) t^{+}(x) & =\text { H.P.V. } \int_{B} M(s, x) u(s) d B(s)-\text { C.P.V. } \int_{B} L(s, x) t(s) d B(s)
\end{aligned}
$$

Solve the problem 4.
2．For the exterior problem 5，please derive the dual boundary integral equa－ tions（DBIE）for a corner and reduce to smooth boundary．
3．Find the differences of the two dual boundary integral equations（DBIE）for a corner between interior and exterior problems．
4．Consider the following problem：
Governing equation：

$$
\nabla^{2} u(r, \theta)=0, \quad R<r<\infty, \quad 0<\theta<2 \pi
$$

Boundary condition：

$$
u(r, \theta)=f(\theta), \text { for } r=R
$$

Please derive the Poisson formula for exterior domain．

$$
u(\rho, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\rho^{2}-R^{2}}{R^{2}+\rho^{2}-2 R \rho \cos \left(\theta-\theta^{\prime}\right)} f\left(\theta^{\prime}\right) d \theta^{\prime}
$$

5．Solve the above exterior problem either analytically or numerically for the following B．C．

$$
f(\theta)= \pm 1.0,+ \text { for } 0<\theta<\pi,- \text { for } \pi<\theta<2 \pi
$$

where the radius is $R=1$ ．
6．Plot the potential and potential gradient along the three angles 30，60， 90 degrees from $\rho=1$ to $\rho=5$ ．Also，plot the normal flux on the circular boundary．
7．Reference exact solution：

$$
u(x, y)=\frac{2}{\pi} \tan ^{-1}\left(\frac{2 y}{x^{2}+y^{2}-1}\right)
$$

