邊界元素法作業

海大河海系 陳正宗
I．The fundamental solution is defined as follows

$$
\nabla^{2} U(x, s)=\delta(x-s)
$$

The dual integral equations can be derived

$$
\begin{aligned}
& 2 \pi u(s)=\int_{B}\{T(x, s) u(x)-U(x, s) t(x)\} d B(x) \\
& 2 \pi t(s)=\int_{B}\{M(x, s) u(x)-L(x, s) t(x)\} d B(x)
\end{aligned}
$$

The dual integral equations can be changed to

$$
\begin{aligned}
& 2 \pi u(x)=\int_{B}\{T(s, x) u(s)-U(s, x) t(s)\} d B(s) \\
& 2 \pi t(x)=\int_{B}\{M(s, x) u(s)-L(s, x) t(s)\} d B(s)
\end{aligned}
$$

（a）．Determine $U(s, x)$ except the method in course（Fourier Transform or any other method）．
（b）．Plot $U(s, x), T(s, x), L(s, x)$ and $M(s, x)$ versus x in contour form and 3－D plot for fixed $s=(0,0)$ ．
（c）．Determine the order of singularity $O(\epsilon)$ for $U(s, x), T(s, x), L(s, x)$ and $M(s, x)$ as $x \rightarrow s$ by setting $s=x+\epsilon(\cos (\theta), \sin (\theta))$ ．
（d）．Prooof of symmetry and transpose symmetry for the four kernel functions．

$$
\begin{gathered}
U(s, x)=U(x, s) \\
T(s, x)=L(x, s) \text { or } T(s, x)=-L(x, s) \\
M(s, x)=M(x, s)
\end{gathered}
$$

（e）．Prooof of the following identities．

$$
\begin{aligned}
2 \pi & =\int_{B}\{T(s, x)\} d B(s) \\
0 & =\int_{B}\{M(s, x)\} d B(s)
\end{aligned}
$$

（f）．Find the dependence of normal vectors in the four kernels．
海大河海系陳正宗 邊界元素法教材
【存檔：E：／ctex／course／bemhw4．te】【建檔：Mar．／25／＇95】

