## 習題4－1

## 【基礎作業】

1．將將習題 3－1 的內域問題改成外域問題，比較所得特性矩陣的差別內域問題（習題 3－1）

$$
\begin{aligned}
& {\left[T_{i}\right]\{u\}=\left[U_{i}\right]\{t\}} \\
& {\left[M_{i}\right]\{u\}=\left[L_{i}\right]\{t\}}
\end{aligned}
$$

外域問題（習題 4－1）

$$
\begin{aligned}
& {\left[T_{e}\right]\{u\}=\left[U_{e}\right]\{t\}} \\
& {\left[M_{e}\right]\{u\}=\left[L_{e}\right]\{t\}}
\end{aligned}
$$

試比較（1）．$U_{i}, U_{e},(2) . T_{i}, T_{e},(3) L_{i}, L_{e}(4) . M_{i}, M_{e}$ 的差別。

## 【進修作業】

1．將 BECRAY．FOR 程式修改成外域問題，測試例如下
Governing equation：

$$
\nabla^{2} u(r, \theta)=0, \quad R<r<\infty, \quad 0<\theta<2 \pi
$$

Boundary condition：

$$
u(r, \theta)=f(\theta), \text { for } r=R
$$

Please derive the Poisson formula for exterior domain．

$$
u(\rho, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\rho^{2}-R^{2}}{R^{2}+\rho^{2}-2 R \rho \cos \left(\theta-\theta^{\prime}\right)} f\left(\theta^{\prime}\right) d \theta^{\prime}
$$

Solve the above exterior problem either analytically or numerically for the following B．C．

$$
f(\theta)= \pm 1.0,+ \text { for } 0<\theta<\pi,- \text { for } \pi<\theta<2 \pi
$$

where the radius is $R=1$ ．
Plot the potential and potential gradient along the three angles 30，60， 90 degrees from $\rho=1$ to $\rho=5$ ．Also，plot the normal flux on the circular boundary．

