邊界元素法第三次作業

1．The fundamental solution $U_{1}(x, s)$ satisfies

$$
\begin{equation*}
\frac{d^{4} U_{1}(x, s)}{d x^{4}}=\delta(x-s) \tag{1}
\end{equation*}
$$

where

$$
U_{1}(x, s)= \begin{cases}\frac{1}{12}(x-s)^{3}, & x>s, \tag{2}\\ -\frac{1}{12}(x-s)^{3}, & x<s\end{cases}
$$

Please derive the stiiffness matrix of K ．

2．If $U_{2}(x, s)=2 \pi U_{1}(x, s)$ ，please derive the stiiffness matrix of K ．

3．If $U_{3}(x, s)=U_{1}(x, s)+a$ where a is a constant，please derive the stiiffness matrix of K ．

4．If $U_{4}(x, s)=U_{1}(x, s)+a+b x$ where a and b are constants，please derive the stiiffness matrix of K ．

5．If $U_{5}(x, s)=U_{1}(x, s)+a+b x+c x^{2}$ where a, b and c are constants，please derive the stiiffness matrix of K ．

6．If $U_{6}(x, s)=U_{1}(x, s)+a+b x+c x^{2}+d x^{3}$ where a, b, c and d are constants，please derive the stiiffness matrix of K ．

