邊界元素法第六次作業

1. In the course, we have U(s,x) = ln(r) for 2-D Laplace equation, i. e.,

$$\nabla^2 U(s, x) = \delta(x - s)$$

Express U(x,s), T(x,s), L(s,x) and M(x,s) in component form. Also prove that

$$U(s,x) = U(x,s)$$

$$T(s,x) = L(x,s)$$

$$M(s,x) = M(x,s)$$

- **2.** Plot the figures of $U(x_1, x_2; 0, 0)$ for $r = 0.1 \sim 1$.
- **3.** Plot the figures of $T(x_1, x_2; 0, 0)$ for $r = 0.1 \sim 1$.

Setting
$$n(x) = (cos(0^o), sin(0^o))$$

Setting
$$n(x) = (cos(90^\circ), sin(90^\circ))$$

4. Plot the figures of $L(x_1, x_2; 0, 0)$ for $r = 0.1 \sim 1$.

Setting
$$n(s) = (cos(0^o), sin(0^o))$$

Setting
$$n(s) = (cos(90^{\circ}), sin(90^{\circ}))$$

5. Plot the figures of $M(x_1, x_2; 0, 0)$ for $r = 0.1 \sim 1$.

Setting
$$n(x) = (cos(0^o), sin(0^o))$$
 and $n(s) = (cos(0^o), sin(0^o))$.

Setting
$$n(x) = (cos(0^{\circ}), sin(0^{\circ}))$$
 and $n(s) = (cos(90^{\circ}), sin(90^{\circ}))$.

■ 海大河海系陳正宗 邊界元素法■

【存檔:E:/ctex/course/bem/hw976.te】【建檔:Apr./24/'97】