邊界元素法第三次作業 by J．T．Chen

1．The fundamental solution $U_{1}(x, s)$ satisfies（10\％）

$$
\begin{equation*}
\frac{d^{2} U_{1}(x, s)}{d x^{2}}=\delta(x-s) \tag{1}
\end{equation*}
$$

where

$$
U_{1}(x, s)= \begin{cases}\frac{1}{2}(x-s), & x>s \tag{2}\\ -\frac{1}{2}(x-s), & x<s\end{cases}
$$

the boundary integral equation can be obtained as

$$
\begin{equation*}
u(s)=\left.\frac{\partial U_{1}(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U_{1}(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{3}
\end{equation*}
$$

Please derive the stiiffness matrix of K such that

$$
K \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
\left.\frac{d u(x)}{d x}\right|_{x=0} \\
\left.\frac{d u(x)}{d x}\right|_{x=1}
\end{array}\right]
$$

2．If $U_{2}(x, s)=2 \pi U_{1}(x, s)$ ，i．e．，(10%)

$$
U_{2}(x, s)= \begin{cases}\pi(x-s), & x>s \tag{4}\\ -\pi(x-s), & x<s\end{cases}
$$

the boundary integral equation can be obtained

$$
\begin{equation*}
\alpha u(s)=\left.\frac{\partial U_{2}(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U_{2}(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{5}
\end{equation*}
$$

Please determine the value of $\alpha=$ ？
Please derive the stiiffness matrix of K such that

$$
K \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
\left.\frac{d u(x)}{d x}\right|_{x=0} \\
\left.\frac{d u(x)}{d x}\right|_{x=1}
\end{array}\right]
$$

and compare with Problem 1.
3．If $U_{3}(x, s)=U_{1}(x, s)+b$ where b is a constant，we can have（ 10% ）

$$
\begin{equation*}
u(s)=\left.\frac{\partial U_{3}(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U_{3}(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{6}
\end{equation*}
$$

Please derive the stiiffness matrix of K such that

$$
K \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
\left.\frac{d u(x)}{d x}\right|_{x=0} \\
\left.\frac{d u(x)}{d x}\right|_{x=1}
\end{array}\right]
$$

and compare with Problem 1 and 2.
4．If $U_{4}(x, s)=U_{1}(x, s)+a x+b$ where a and b are constants，we can have（ 10% ）

$$
\begin{equation*}
u(s)=\left.\frac{\partial U_{4}(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U_{4}(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{7}
\end{equation*}
$$

Please derive the stiiffness matrix of K such that

$$
K \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
\left.\frac{d u(x)}{d x}\right|_{x=0} \\
\left.\frac{d u(x)}{d x}\right|_{x=1}
\end{array}\right]
$$

and compare with Problem 1， 2 and 3.

