邊界元素法1998第九次作業

1．Extend the two－dimensional case in the course to three－dimensional case for the bump integral in U kernel integration．

Determine the following integral：

$$
\int_{B_{\epsilon}} U(s, x) d B(s)
$$

where

$$
U(s, x)=\frac{1}{r}
$$

2．Extend the two－dimensional case in the course to three－dimensional case for the bump integral in T kernel integration．

Determine the following integral：

$$
\int_{B_{\epsilon}} T(s, x) d B(s)
$$

where

$$
T(s, x)=\frac{\partial U(s, x)}{\partial n_{s}}
$$

3．Extend the two－dimensional case in the course to three－dimensional case for the bump integral in L kernel integration．

Determine the following integral：

$$
\int_{B_{\epsilon}} L(s, x) d B(s)
$$

where

$$
L(s, x)=\frac{\partial U(s, x)}{\partial n_{x}}
$$

4．Extend the two－dimensional case in the course to three－dimensional case for the bump integral in M kernel integration．

Determine the following integral：

$$
\int_{B_{\epsilon}} M(s, x) d B(s)
$$

where

$$
M(s, x)=\frac{\partial^{2} U(s, x)}{\partial n_{s} \partial n_{s}}
$$

