邊界元素法1999第十二次作業

1．In the course，the auxilliary system is fundamental solution $U(x, s)$ which satisfies

$$
\begin{equation*}
\frac{d^{2} U(x, s)}{d x^{2}}=\delta(x-s) \tag{1}
\end{equation*}
$$

where

$$
U(x, s)= \begin{cases}\frac{1}{2}(x-s), & x>s \tag{2}\\ -\frac{1}{2}(x-s), & x<s\end{cases}
$$

Now we change to non－source auxilliary system，the boundary integral equation reduces to

$$
\begin{equation*}
u(s)=\left.T(x, s) u(x)\right|_{0} ^{1}-\left.U(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \rightarrow 0=\left.T(x) u(x)\right|_{0} ^{1}-\left.U(x) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{3}
\end{equation*}
$$

where

$$
U(x, s) \rightarrow U(x)=a x+b
$$

By considering the two combinations for a and b ，we can derive the stiffness matrix of $[K]$ such that

$$
[K] \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right]
$$

where $P_{0}=-t(0)$ and $P(1)=t(1)$ ，and compare the result in the course by using any a and b ．

Generalized inverse：

$$
\begin{gathered}
{[K][K]^{-1}[K]=[K]} \\
{[K][F][K]=[K]} \\
{[F][F]^{-1}[F]=[F]} \\
{[F][K][F]=[F]} \\
{[K]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]} \\
{[F]=\left[\begin{array}{cc}
\frac{1}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{1}{4}
\end{array}\right]}
\end{gathered}
$$

Ref：
J．T．Chen and and S．R．Kuo，A nonsingular integral formulation for the Helmhotltz equations，Submitted， 1999.

