邊界元素法1999第十四次作業

1．In the previous homework，we have plotted the fundamental solution，$U(s, x)$ ， in the closed and degenerate forms as follows：

Closed form：

$$
U(s, x)=\ln (r)
$$

Degenerate form：

$$
\begin{aligned}
U(s, x) & =\ln r=\ln \sqrt{(\rho \cos (\phi)-R \cos (\theta))^{2}+(\rho \sin (\phi)-R \sin (\theta))^{2}} \\
& =\left\{\begin{array}{l}
U^{i}(s, x)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos (m(\theta-\phi)), R>\rho \\
U^{e}(s, x)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos (m(\theta-\phi)), \rho>R
\end{array}\right. \\
T(s, x) & =\frac{\partial U(s, x)}{\partial n(s)} \\
= & \left\{\begin{array}{l}
T^{i}(s, x)=\frac{1}{R}+\sum_{m=1}^{\infty} \frac{\rho^{m}}{\rho^{m}} \cos (m(\phi-\theta)), R>\rho \\
T^{e}(s, x)=-\sum_{m=1}^{\infty} \frac{R^{m-1}}{\rho^{m}} \cos (m(\phi-\theta)), \quad \rho>R
\end{array}\right.
\end{aligned}
$$

where $s=(R, \theta), x=(\rho, \phi)$ and $r=|x-s|$ ．
2．Now，please plot the two contour figues for $T(s, x)$ with normal vector $\mathbf{n}(s)=\mathbf{e}_{R}$ at the fixed point $s=(R, \theta)$ in the shadow region in Fig． 1 using exact form and degenerate form by summing N terms instead of infinite terms．
3．Discuss the effect of the number of terms，N ．
4．Compare the results with the plot of $T\left((0,0),\left(x_{1}, x_{2}\right)\right)$

$$
T(s, x)=\frac{-y_{i} n_{i}}{r^{2}}
$$

where

$$
\begin{gathered}
y_{i}=x_{i}-s_{i} \\
\left(s_{1}, s_{2}\right)=(0,0) \\
\mathbf{n}(s)=(0,1)
\end{gathered}
$$

References

［1］陳正宗與洪宏基，邊界元素法，第二版，新世界出版社，台北，頁 90 與 214 ，

