邊界元素法1999第二次作業

1．In the course，we derive the fundamental solution in the exact form．The fundamental solution can be represented in degenerate form as follows：

Closed form：

$$
U(s, x)=\ln (r)
$$

Degenerate form：

$$
\begin{aligned}
U(s, x) & =\ln r=\ln \sqrt{(\rho \cos (\phi)-R \cos (\theta))^{2}+(\rho \sin (\phi)-R \sin (\theta))^{2}} \\
& =\left\{\begin{array}{l}
U^{i}(s, x)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos (m(\theta-\phi)), R>\rho \\
U^{e}(s, x)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos (m(\theta-\phi)), \rho>R
\end{array}\right.
\end{aligned}
$$

where $s=(R, \theta), x=(\rho, \phi)$ and $r=|x-s|$ ．
Special case：

$$
\begin{aligned}
U(s, x) & =\ln r=\ln \sqrt{2-2 \cos (\theta-\phi)} \\
& =\left\{\begin{array}{l}
U^{i}(s, x)=-\sum_{m=1}^{\infty} \frac{1}{m} \cos (m(\theta-\phi)), R>\rho \\
U^{e}(s, x)=-\sum_{m=1}^{\infty} \frac{1}{m} \cos (m(\theta-\phi)), \rho>R
\end{array}\right.
\end{aligned}
$$

where $\rho=R=1$ ．
2．Plot the two contour figues for $U(s, x)$ in the shadow region in Fig． 1 using exact form and degenerate form by summing N terms instead of infinite terms．
3 ．Discuss the effect of the number of terms，N ，and compare the contour plots using closed form and degenerate form．
4．Extend the degenerate form to T, L and M kernels．

