邊界元素法1999第七次作業

1．In the course，we intoduced a small term $q u(x)$ into

$$
\begin{equation*}
\frac{d^{2} u(x)}{d x^{2}}=\delta(x-s),-\infty<x<\infty \tag{1}
\end{equation*}
$$

we can obtain

$$
\begin{equation*}
\frac{d^{2} u(x)}{d x^{2}}-q u(x)=\delta(x-s),-\infty<x<\infty \tag{2}
\end{equation*}
$$

We have solved the fundamental solution for Eq．（1）by the limiting process of the results in Eq．（2）．For the homework，what happens if $-q u(x) i$ is added into the system．

2．In the same way，by intoducing a small term $p u(x)$ into

$$
\begin{equation*}
\frac{d^{4} u(x)}{d x^{4}}=\delta(x-s),-\infty<x<\infty \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{d^{4} u(x)}{d x^{4}}+p u(x)=\delta(x-s),-\infty<x<\infty \tag{4}
\end{equation*}
$$

Solve the fundamental solution for Eq．（3）by the limiting process of the results in Eq．（4）．

3．Summary：methods for solving fundamental solution
（1）．subsection method
（2）．Variations of parameters－Wronskian
（3）．Limiting process for Dirac－Delta function：normal distribution
（4）．transform methods by introducing a small term（single pole of residue）
（5）．transform methods directly（higher pole of rsidue）－extended residue theorem．

