The force between the two masses，M and m is

$$
\mathbf{F}=\frac{-G M m}{r^{2}} \hat{\mathbf{r}}
$$

where r is the distance between the two masses．Now consider the mass M as a concentrated mass $1 g$ and the mass $m=\rho d s$ as a uniform distributed mass with density ρ per unit length．If the distributed mass（ $\rho d s$ ）locates along $s=-1$ to $s=1$ ．
（a．）The concentrated mass locates at (x, y) ，find the total force between the concentrated mass and the distributed mass．
（b．）The concentrated mass locates at $(x, y)=(3,4)$ ，find the total force between the concentrated mass and the distributed mass．
（c．）Assume that the point locates at $(x, y)=(0, \epsilon)$ ，find the forces at (x, y) for three cases， $\epsilon=0^{-}, 0,0^{+}$．
（d．）Please determine the equivalent locations of the lumped mass for all the cases．
（e．）Give comments by using the Hadamard pricipal value．
f．Plot F_{x} versus (x, y) and F_{y} versus (x, y) ．
（Hint：Kellog book，pp．4－6）

