國立台灣海洋大學河海工程研究所BEM 第4次作業

1．In the course，the fundamental solution $U(x, s)$ satisfies

$$
\begin{equation*}
\frac{d^{2} U(x, s)}{d x^{2}}=\delta(x-s) \tag{1}
\end{equation*}
$$

where

$$
U(x, s)= \begin{cases}\frac{1}{2}(x-s), & x>s \tag{2}\\ -\frac{1}{2}(x-s), & x<s\end{cases}
$$

the boundary integral equation can be obtained as

$$
\begin{equation*}
u(s)=\left.\frac{\partial U(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{3}
\end{equation*}
$$

By approaching the field point s to 0^{+}and 1^{-}，we have derived the stiffness matrix of $[K]$ such that

$$
[K] \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right]
$$

where $P_{0}=-t(0)$ and $P(1)=t(1)$ ．

2．It is interesting to find that $U_{c}(x, s)=U(x, s)+a x+b$ also satisfies Eq．（1） to be an auxilliary system，where a and b are arbitrary constants，please reconstruct the stiffness matrix using $U_{c}(x, s)$ instead of $U(x, s)$ in Eq．（3）， i．e．，

$$
\begin{equation*}
u(s)=\left.\frac{\partial U_{c}(x, s)}{\partial x} u(x)\right|_{0} ^{1}-\left.U_{c}(x, s) \frac{d u(x)}{d x}\right|_{0} ^{1} \tag{4}
\end{equation*}
$$

where the stiffness matrix $[K]$ satisfy

$$
[K] \mathbf{u}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{c}
-\left.\frac{d u(x)}{d x}\right|_{x=0} \\
\left.\frac{d u(x)}{d x}\right|_{x=1}
\end{array}\right]=\left[\begin{array}{c}
P_{0} \\
P_{1}
\end{array}\right]
$$

and compare the result in the course by using any a and b ．

3．Is it possible that the matrix $\left[U_{a b}\right]$ in

$$
\left[U_{a b}\right]\{t\}=\left[T_{a b}\right]\{u\}
$$

can not be invertible for some combinations of a and b ．If yes，can you explain the phenomenon？

4．Is it possible to derive the free－free flexibility matrix $[F]$ such that

$$
[F] \mathbf{P}=\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right]\left[\begin{array}{c}
P(0) \\
P(1)
\end{array}\right]=\left[\begin{array}{l}
u(0) \\
u(1)
\end{array}\right]=\left[\begin{array}{c}
P_{0} \\
P_{1}
\end{array}\right]
$$

Ref：
C．A．Fellipa，K．C．Park and M．R．J．Filho，The construction of free－free flexibility matrices as generalized inverses，Computers $\mathcal{E}^{\mathcal{Z}}$ Structure，Vol．68， pp．41－48， 1998.
\qquad
BEM第4次作業，存檔：c：／jtchen／bem004．cte 建檔：Mar．／30／＇01

