程式 44 Numerical instability

1. Given the linear algebraic system,

$$\begin{bmatrix} 1 & 0 \\ 0 & \alpha \varepsilon \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1 \\ \beta \varepsilon \end{cases}, \ \alpha, \beta, \varepsilon \in \mathbb{R},$$

① Solve x_1 and x_2 analytically.

O Solve x_1 and x_2 numerically by setting $\varepsilon \to 0$.

3 Solve x_1 and x_2 in the transformed system

$$\left[A+c\widetilde{b}\,\widetilde{b}^{T}\,\right]\widetilde{x}=\widetilde{b}$$

where c is an arbitrary constant.

④ Solve

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha \varepsilon + p & -p \\ 0 & -p & p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ \beta \varepsilon \\ 0 \end{bmatrix},$$

where p is an arbitrary constant.

 \mathbb{S} Slove x_1 and x_2 by using pseudo-inverse when $\varepsilon \to 0$.