

fengchia.ppt

Outline

- Introduction to BEM
- Introduction to dual BEM
- Theory of dual integral equations
- The role of dual integral equations
- Discussion on singular integrals
- Applications
- Conclusions

What Is Boundary Element Method ?

Finite element method

○ geometry node

American doctor !

Boundary element method

the Nth constant or linear element

Chinese doctor !

What Is Dual Boundary Element Method ?

Boundary element method

Artifical boundary introduced !

Dual boundary element method

Dual integral equations needed !

Theory of Dual Integral Equations Dual Boundary Element Method

Theory of Dual Integral Equations

Dual integral equations for domain point

$$2\pi u(x) = \int_{B} T(s, x)u(s)dB(s) - \int_{B} U(s, x)t(s)dB(s), \quad x \in D$$
$$2\pi t(x) = \int_{B} M(s, x)u(s)dB(s) - \int_{B} L(s, x)t(s)dB(s), \quad x \in D$$

Theory of Dual Integral Equations

Degeneracy of the Degenerate Boundary

- geometry node
- the Nth constant or linear element

 $[U]{t} = [T]{u}$

 $[L]{t} = [M]{u}$

С		n(s)			5(+)	6(-)			
▼ [<i>T</i>]=	$\pi - \pi$	0.000	0.588	0.519	-0.321	0.321	0.927	1.107	
	. 000	$-\pi$	1.107	0.927	0.321	-0.321	0.519	0.588	
	0.219	1.107	$-\pi$	1.107	0.464	-0.464	0.219	0.490	
	0.519	0.927	1.107	$-\pi$	0.785	-0.785	0.000	0.588	J
	0 .927	0.927	0.888	1.326	$-\pi$	$-\pi$	1.326	0.888	5(+)
	0.927	0.927	0.888	1.326	$-\pi$	$-\pi$	1.326	0.888	6(+)
	0.927	0.519	0.588	0.000	-0.7854	0.785	- <i>π</i>	1.107	5(1)
	1.107	0.219	0.490	0.219	-0.464	0.464	1.107	-π	l

-	$\rightarrow n($	<i>s</i>)		5(+) 6(-)				
Τ	4.000	-1.333	-0.205	-0.061	0.600	-0.600	-0.800	-1.600
	-1.333	4.000	-1.600	-0.800	-0.600	0.600	-0.061	-0.205
(x)	-0.282	-1.600	4.000	-1.600	-0.400	0.400	-0.282	-0.236
141	-0.061	-0.800	-1.600	4.000	-1.000	1.000	-1.333	-0.205
[<i>M</i>]=	0.853	-0.853	-0.715	-3.765	8.000	-8.000	3.765	0.715
	-0.853	0.853	0.715	3.765	-8.000	8.000	-3.765	-0.715
	-0.800	-0.062	-0.205	-1.333	1.000	-1.000	4.000	-1.600
	-1.600	-0.282	-0.235	-0.282	0.400	-0.400	-1.600	4.000

5(+)

6(-)

Definitions of R.P.V., C.P.V. and H.P.V.

• R.P.V.

$$R.P.V.\sum_{-1}^{1} \ln|x| \, dx = (x \ln|x| - x) \, \Big|_{x=-1}^{x=1} = -2$$

• C.P.V.

$$C.P.V.\sum_{i=1}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0} \sum_{i=1}^{-\varepsilon} + \sum_{i=1}^{1} \frac{1}{x} dx = 0$$

• H.P.V.

$$H.P.V. \prod_{-1}^{1} \frac{1}{x^{2}} dx = \lim_{\varepsilon \to 0} \prod_{-1}^{-\varepsilon} + \prod_{\varepsilon}^{1} \frac{1}{x^{2}} dx - \frac{2}{\varepsilon} = -2$$

Applications of Dual Integral Equations

Conclusions

- The theory of dual integral equation has been introduced
- The role of hypersingularity is examined
- The dual boundary element program has been implemented
- The applications to seepage flow with sheet piles, crack problem and thin airfoil aerodynamics have been demonstrated.

