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Chapter 1

Introduction

In mathematics you don’t understand
things. You just get used to them.

J. von Neumann [99]

1.1 Problem setting

Today many commercially available mathematical software tools exist that solve a
large variety of mathematical problems. Often these tools are being used in a “black
box” approach. The user inserts a mathematical problem and obtains a solution for
it, without too much knowledge of what is happening behind the scene. Of course,
software manufacturers claim that there is no need to have detailed information on the
working of their products. Regardless of the mathematical problem that is inserted,
the software will produce the correct solution. The question is whether this is always
true.

Typically, in software tools a mathematical problem is defined on an object that
has a certain size and shape. The user assumes that the success of solving the problem
does not depend on this size and shape. For instance, if a correct solution is obtained
for a square object, we expect a correct solution for the samemathematical problem
for a rectangular object. If a correct solution is obtained for a circular object, we
expect a correct solution for a circular object that is twiceas large.

The mathematical software tools employ several numerical methods that solve
mathematical problems. One such method is the boundary element method (BEM),
which is the topic of this thesis. The success of this particular method to solve certain
mathematical problems may depend on the size and shape of theobjects on which
the problems are defined. If the BEM is able to solve a problem on a certain object,
it is not necessarily able to solve the problem on an object that is slightly larger or
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2 Chapter 1 Introduction

Figure 1.1: In most numerical methods both the interior and the boundaryof a domain
need to be discretised (left). In the boundary element method only the boundary needs to be
discretised (right).

smaller. This has its effect on the software that is built upon the BEM. The user
of such software must be aware that solutions provided by thesoftware may not be
correct. Hence in these cases detailed information on the working of the software,
i.e. on the numerical method, is essential in judging the correctness of solutions. This
thesis addresses the working of the BEM and investigates under which conditions it
produces correct solutions.

1.2 Boundary Element Method

The BEM is a numerical method that approximates solutions ofboundary value
problems (BVPs). The method is a relatively young method as its birth can be placed
in the sixties. Compared to the finite element method (FEM), the development of the
BEM has been substantially slower. One reason for this slower development in the
BEM is the limited availability of fundamental solutions ofthe BVPs. Another reason
is likely to be the involvement of singular integral equations that need to be solved.
Today these equations are well-understood, and the number of application fields in
which the BEM is used is large, although not as large as for thefinite element method.

The most important aspect in which the BEM distinguishes itself from other
numerical methods is the fact that only the boundary of a domain needs to be
discretised. In many other numerical methods, such as the FEM, finite differences or
the finite volume method, in addition to the boundary, the interior of the domain also
needs to be discretised (Figure 1.1). As a consequence of theboundary discretisation,
the BEM is a suitable method for problems on external domains, or domains that have
a free or moving boundary. Also problems in which singularities or discontinuities
occur can be handled efficiently by the BEM. Another advantage of the BEM is that
variables and their derivatives, for instance temperatureand its flux, are computed
with the same degree of accuracy.
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Integral equations constitute the foundation of the BEM, and have been known
for more than a century. In particular, it is known for a long time that the solutions
of BVPs can also be expressed as solutions of an integral equation. As early as 1903
Fredholm already used discretised integral equations for potential problems [43].
His work can be considered the basis for the indirect formulation of the BEM; the
functions that appear in theindirect formulation do not have a physical meaning,
though physical quantities can be derived from these functions. The basis of the
direct formulation can be placed at Somigliana [86] in 1886, who presented an
integral equation relating displacements and stresses. A large number of books and
papers have appeared on the subject of integral equations inpotential and elasticity
theory by mathematicians, such as Kellogg [58], Muskhelishvili [74], Mikhlin [73]
and Kupradze [63]. Their results are, however, limited to simple problems as the
integral equations have to be solved with analytical procedures and without the aid
of computers.

The breakthrough in the development of the BEM came in the nineteen sixties.
Jaswon [55] and Symm [90] discretised the integral equations for two-dimensional
potential problems by approximating the boundary of a domain by a set of straight
lines. At each line element the functions are approximated by constants. Their
method has a semi-direct formulation, as the functions needto be differentiated or
integrated to obtain physical quantities. A direct formulation has been introduced by
Rizzo [80], who also used discretised integral equations torelate displacements and
tractions in two-dimensional elasticity theory. The extension to three dimensions has
been given by Cruse [31], using triangular elements to describe the domain boundary.

In the late sixties and early seventies the number of applications for which
boundary elements are used grew. This constituted a firm foundation for the further
development of the BEM and proved that the BEM is a powerful and accurate
technique. At this stage attention was also paid to the errorand convergence analysis
of the BEM. An important contribution came from Hsiao and Wendland [54], who
performed such error and convergence analysis for theGalerkin formulation of
boundary integral equations. As opposed to the Galerkin formulation, thepoint
collocationformulation yields easier approximations of integral equations. The error
analysis for this type of boundary elements was performed byArnold, Saranen and
Wendland [3, 4, 83] during the eighties.

The first book covering the numerical solution of boundary integral equations
has been published by Jaswon and Symm [56] in 1977. Not much later Brebbia [9]
used the terminology “Boundary Elements” for the first time as opposed to “Finite
Elements”. As of now, the BEM proves to be an effective alternative to solve
many engineering problems from a variety of application fields, for instance
acoustics, fracture mechanics, potential theory, elasticity theory, viscous flows,
thermodynamics, etc.
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1.3 Condition number

One way to measure the ability of a numerical method to accurately solve
mathematical problems is by monitoring the so-calledcondition number. In this
thesis we compute or estimate the condition numbers that appear in the BEM to see
whether this method is able to solve mathematical problems accurately.

To explain the meaning of the condition number we first need toaddress the terms
well-conditionedandill-conditioned. In general a problem is called well-conditioned
if a small change in the input data does not result in a large change in the problem’s
solution. A problem is called ill-conditioned if a small change in the input data
causes a large change in the solution. Depending on how one defines “large” and
“small”, this classification enables us to divide problems into well-conditioned and
ill-conditioned problems. However it does not provide any information on the degree
of ill-conditioning. The condition number does precisely that.

Within the setting of this thesis, the condition number ranges from one to infinity.
If the condition number is equal to one, then a problem is verywell-conditioned.
If a problem is singular, the condition number is infinitely large. For problems that
approach a singular problem, the condition number approaches infinity. Hence such
problems are very ill-conditioned.

In this thesis we study the condition number of linear systems of algebraic
equations, which are problems of the form

Ax = b. (1.1)

Such systems are the result of discretising the integral equations that appear in the
BEM. The success of solving the linear system depends to a large extent on the
condition number of the system matrixA. If the condition number of this matrix
is very large, then the linear system is difficult to solve accurately. Moreover, if the
condition number is large, the solutionx is sensitive to perturbations in the input
datab.

It is unclear when the concept of condition number, and related to that the term
ill-conditioned, was introduced. In 1948 Turing [92] mentioned that

... the expression ‘ill-conditioned’ is sometimes used merely as a
term of abuse applicable to matrices or equations, but it seems often to
carry a meaning somewhat similar to that defined below.

Evidently the term ill-conditioned was already in use at that time. In his paper Turing
introduced the normN(A) and the maximum coefficientM(A) of a matrixA by

N(A) :=
(∑

i,j

a2
ij

)1/2
,

M(A) := max
i,j

|aij |, (1.2)
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in which we recognizeN(A) as the Frobenius norm andM(A) as the maximum
norm where the matrixA is seen as a vector of numbers. With these two quantities
Turing defined theN-condition numberas 1

nN(A)N(A−1) and theM-condition
numberasnM(A)M(A−1), wheren is the size of the matrix. He claimed that
these condition numbers are a measure of the degree of ill-conditioning in a matrix.
Ironically, the quantity that is now known as the spectral norm of a matrix was also
defined by Turing under the namemaximum expansion. He did not use this quantity
to define a related condition number however. Therefore the number that is nowadays
referred to as the condition number does not exactly match the condition numbers
defined by Turing.

1.4 Condition numbers of the BEM-matrices

Today the BEM is widely used in many application fields. Regrettably the issue of
conditioning is often neglected. Usually when solving a BVPwith the BEM, it is
assumed that the condition number of the resulting system matrix is modest. The
question is whether this is true.

First we need to remark that a BVP that is ill-posed will automatically lead to
BEM-matrices that have large condition numbers. These BVPsare therefore not
the most interesting problems to investigate. A more interesting question is whether
well-posed BVPs can lead to BEM-matrices that have large condition numbers. It is
this last class of BVPs that we focus on in this thesis.

Until now little little attention has been given to the condition number of BEM-
matrices. It has been proven that the condition number of thesystem matrix is at
least orderN , whereN is the number of boundary elements on a two-dimensional
domain [97]. This holds for the BEM-matrices that correspond to potential problems
with Dirichlet boundary conditions. Similar results are derived by others [21],
who have shown that some small modifications to the algebraicset of equations
can improve the conditioning of the linear system. In a detailed study for two
specific domains, namely the circle and the ellipse, the BEM is applied to the
Laplace equation with Dirichlet boundary conditions [19, 20]. For both domains
analytical expressions for the condition number of the BEM-matrix are derived.
These expressions show the dependance of the condition number on the radius of
the circle or the aspect ratio of the ellipse. The Laplace equation on a circle with
Dirichlet boundary conditions has been the topic of severalother papers [22, 24];
special attention is given to the so-calledlocal condition number. It is claimed that
this local condition number is a more accurate indicator forthe sensitivity of a linear
system than the ordinary condition number, which gives too pessimistic estimates of
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the sensitivity.
To investigate the condition number of the BEM-matrices, itis useful to study the

underlying boundary integral equations (BIEs), which formthe basis of the BEM. If
the BIE is singular, we may expect that its discrete counterpart, the linear system,
is at least ill-conditioned. In that case the condition number is large and the linear
system is difficult to solve accurately.

For the BIE arising from the Laplace equation some interesting results can be
found in literature. It was observed that the BIE for the 2D Laplace equation with
Dirichlet boundary conditions is singular on a domain of certain size [53, 56, 75, 85].
If the BIE is singular, the homogeneous BIE has a non-trivialsolution. As a
consequence we can add a multiple of this homogeneous solution to the solution
of the inhomogeneous BIE, which is henceforth not unique. This introduces an
extraordinary phenomenon; the size of a domain affects the uniqueness of the solution
of the BIE.

Singular BIEs also occur for BVPs for vector valued functions, for instance
for the plane elastostatic problem. By explicitly evaluating the BEM-matrices and
computing their condition numbers it is shown that two sizesof the domain exist
for which the BIE is not uniquely solvable [51, 62]. This numerical observation
is formalized to a general theory, stating that for any 2D domain two sizes exist
for which the BIE for the plane elastostatic problem is singular [27, 95]. There
exists a number of ways to obtain nonsingular BIEs [50], for instance by using the
hypersingular formulation of the BIE for the plane elasticity equations [16]. For this
formulation no sizes exist for which the BIE is singular.

In essence the equations for plane elasticity are equal to the Stokes equations for
viscous flows in 2D. Hence the developed theory for plane elasticity also applies to
the Stokes equations in 2D. This implies that the BIE for the Stokes equations suffers
from the same singularities [41].

The BVPs that we mentioned above, i.e. the Laplace equation,the elastostatic
equations and the Stokes equations, are well-posed problems when Dirichlet
boundary conditions are prescribed. Still, when solved with the BEM, ill-conditioned
matrices appear at certain domains. This thesis provides further investigation on this
phenomenon.

1.5 Objectives

The objectives of this thesis are twofold. First we want to obtain a better
understanding of the conditioning of linear systems that occur in the BEM. The
second objective is to study the effectiveness of the BEM fora particular application;
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the simulation of the blowing phase in the industrial production process of glass
bottles and jars.

1.5.1 Solvability

Almost all research that has been performed on condition numbers and boundary
integral equations concerns BVPs with Dirichlet boundary conditions. For BVPs
with mixed boundary conditions hardly any results are present. BVPs with mixed
boundary conditions is therefore one of the topics of this thesis. We investigate the
condition numbers of the matrices that appear when the BEM isused to solve such
BVPs.

For the BEM-matrix arising from the Laplace equation with mixed boundary
conditions on a circle it is possible to estimate its condition number. We show that
this matrix is well-conditioned, except for the unit circleand circles that are close to
the unit circle. In these cases the condition number is (infinitely) large.

For the BEM-matrix for the Laplace equation with mixed boundary conditions
on an arbitrary 2D domain it can be shown that there is one specific scaling of that
domain for which the condition number is infinitely large. The scaling for which
this happens is called thecritical scaling and the corresponding domain thecritical
domain.

The BEM-matrix for the Stokes equations with mixed boundaryconditions on
an arbitrary domain can also have an infinitely large condition number for certain
domains. As the corresponding BIE consists of two equations, there exist two
scalings of the domain at which the condition number becomesinfinitely large.

There are several ways to avoid the infinitely large condition numbers at critical
domains. The simplest remedy is to rescale the domain to another size such that the
condition number is bounded. Another option is to add an extra equation to the linear
system that guarantees low condition numbers. This extra equation is a compatibility
condition that stems from the BVP. A drawback of this option is that we have to solve
a system with a rectangular matrix, which requires different solution techniques. A
third option is to slightly modify the fundamental solutionof the BVP. By including
a scaling parameter in this fundamental solution it can be shown that the condition
numbers of the BEM-matrices remain bounded at the critical domains.

1.5.2 Blowing of glass

The singular BIEs that we mentioned above typically occur ina 2D setting. This is
a direct consequence of the logarithmic nature of the fundamental solution for BVPs
that contain the Laplace operator. Hence prudence is calledfor when one applies the
BEM to BVPs on a 2D domain. In a 3D setting the fundamental solution for BVPs
with the Laplace operator does not have a logarithmic term. Therefore singular BIEs
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similar to those in 2D do no occur in 3D. This allows us to safely apply the BEM to
BVPs in 3D that contain the Laplace operator.

As a special application we consider the blowing problem of viscous fluids. In
this problem a viscous fluid is positioned in a mould and blownto a desired shape.
This blowing process takes place, amongst others, in the industrial manufacturing of
glass bottles and jars. The flow of the fluid is governed by the Stokes equations and
can be solved with the BEM. This problem typically involves afree boundary. We
will investigate whether the BEM is an appropriate numerical method to solve such a
problem.

We are aware of several formulations of the BEM. In this thesis we choose
for the direct symmetric collocation formulation. The direct formulation involves
functions that have a physical meaning, whereas the indirect formulation uses
auxiliary functions that have no physical meaning. The symmetric formulation,
involving the single and double layer operators, is more commonly used than the non-
symmetric formulation, which incorporates the hypersingular operator. We prefer
the collocation method above the Galerkin method. Again thecollocation method
is more commonly used and it does not require a second integration step like the
Galerkin method does.

1.6 Outline of the thesis

The thesis starts with an introduction on the BEM inChapter 2. We demonstrate how
a BVP can be translated into a BIE, and after discretisation of the domain boundary,
into a system of linear equations. We illustrate this for thecase of the Laplace
equation, but the techniques used to derive the linear system are similar for other
BVPs. We also present a number of fundamental results on the boundary integral
operators that appear in the BIE.

In the Chapters 3 and4 we study the BEM-matrices for the Laplace equation
on two-dimensional domains.Chapter 3 concentrates on the Laplace equation
on a circular domain with mixed boundary conditions. The eigenvalues of the
corresponding BEM-matrix are approximated, which resultsin an estimate for the
condition number of the BEM-matrix.Chapter 4 generalizes the results to Laplace
equations on arbitrary 2D domains. For this general class ofproblems it is not
possible to estimate the condition number of the BEM-matrixaccurately, though it is
proven that for certain domains the condition number is infinitely large. This holds
for both Laplace equations with Dirichlet conditions and mixed conditions. This
phenomenon is confirmed by a number of numerical examples on circles, ellipses,
squares and triangles. The large condition numbers can be avoided by making small
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modifications to the standard boundary element formulation. We present a number
of remedies that guarantee low condition numbers.

The extension to BVPs for vector-valued functions is described inChapter 5.
Here we focus on the Stokes equations on a 2D domain. Again it is shown that for
certain domains the condition number of the corresponding BEM-matrix becomes
infinitely large. This happens both for the Stokes equationswith Dirichlet conditions
and mixed conditions. We present a number of numerical examples that illustrate this
phenomenon. To avoid condition numbers that are infinitely large at certain domains
we list several remedies that are more or less similar to the remedies for the Laplacian
case.

The domains for which the condition numbers become infinitely large only occur
in 2D. Therefore we can safely apply the BEM on a 3D problem. IntheChapters 6
and7 we simulate the blowing phase of glass containers. InChapter 6 we present
the mathematical model that describes this blowing problem. The starting point are
the Navier-Stokes equations that describe the flow of a fluid in 3D. These equations
can be reduced to the Stokes equations as the fluid is a creeping viscous flow. It is
shown how to transform the Stokes equations to a set of BIEs. After discretisation
of the domain we obtain a system of linear equations. In this way we can compute
the velocity of the glass at any point in time. We use a time integration method to
track the position of the glass surface as time evolves.Chapter 7 gives numerical
results for the blowing problem. We simulate the blowing of several containers for a
number of different moulds. We also show another application that can be simulated
with the help of the mathematical model for the blowing problem; the evolution of
viscous drops. Such drops, regardless of their initial size, deform to a spherical drop.
We illustrate this process for drops that have the initial shape of an ellipsoide and a
beam. We conclude this chapter by investigating the role of the various forces that
appear in the blowing problem, such as gravity, surface tension and frictional forces.



Chapter 2

Boundary Element Method

This chapter introduces the basics of the boundary element method (BEM). The
method aims at approximating solutions of boundary value problems (BVPs). In
particular we use the Laplace equation on a 2D domain as an example to present
the BEM formulation. For other BVPs the BEM formulation can be obtained in a
similar manner. First we transform the BVP into a boundary integral equation using
Green’s second identity. Then we discretise the boundary ofthe domain and obtain
a linear system of algebraic equations. Finally we pay attention to the calculation of
the matrices that appear in these algebraic equations. The BEM that we present here
is the collocation method in a direct formulation, which means that the variables in
the method represent physical quantities.

2.1 Integral Equations

We consider a simply connected domainΩ in R
2 with boundaryΓ = ∂Ω. Denote by

n the outward normal onΓ. The functionu(x) = u(x, y) for x ∈ Ω is the solution
of the Laplace equation, i.e.

∇2u :=
∂2u

∂x2
+
∂2u

∂y2
= 0, x ∈ Ω. (2.1)

As we will study mixed boundary conditions in this thesis, wedivide the boundaryΓ
into two parts,Γ = Γu ∪ Γq. At Γu we pose Dirichlet boundary conditions and atΓq

we pose Neumann conditions. We introduce the notationq := ∂u/∂n as the normal
derivative ofu onΓ. Then the BVP foru with mixed boundary conditions reads







∇2u = 0, x ∈ Ω,
u = ũ, x ∈ Γu,
q = q̃, x ∈ Γq,

(2.2)

10



Section 2.1 Integral Equations 11

W

G q

n

G u

Figure 2.1: The domainΩ with boundaryΓ, which is divided into a Dirichlet partΓu and a
Neumann partΓq.

whereũ andq̃ are known functions representing the boundary data.
Let xP andxQ be two points inΩ. The Euclidean distance betweenxP andxQ

is

r(xP ,xQ) := ‖xP − xQ‖2 =
√

(xP − xQ)2 + (yP − yQ)2. (2.3)

A fundamental solution for the Laplace operator∇2 is given by

G(xP ,xQ) :=
1

2π
log

1

r(xP ,xQ)
, xP ,xQ ∈ Ω, (2.4)

which means that

∇2
QG(xP ,xQ) = −δ(xP − xQ), xP ,xQ ∈ Ω. (2.5)

The subscriptQ of the Laplace operator denotes differentiation toxQ andδ(x) is the
Dirac-delta function. Note thatGα(xP ,xQ) := 1/2π log(α/r(xP ,xQ)), α ∈ R

+,
is also a fundamental solution for the Laplace operator. Theparameterα can be
chosen as a characteristic length scale of the domainΩ, thus making the argument of
the logarithm dimensionless.

Green’s second identity for two functionsu andv states that
∫

Ω

(

u(xQ)∇2v(xQ) − v(xQ)∇2u(xQ)
)

dΩ =

∫

Γ

(

u(xQ)
∂v

∂n
(xQ) − v(xQ)

∂u

∂n
(xQ)

)

dΓ. (2.6)
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Figure 2.2: The pointxP lies in the interior of the domain.

For u we substitute the solution of the BVP (2.2), and forv we substitute the
fundamental solutionG(xP ,xQ), where xP is regarded as a parameter. As
∇2u(xQ) = 0 in Ω, Green’s second identity yields

∫

Ω

u(xQ)∇2
QG(xP ,xQ)dΩQ =

∫

Γ

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ. (2.7)

The integrals that appear in this identity must be evaluatedcarefully, as the
fundamental solutionG has a logarithmic singularity atxQ = xP . Hence the
location ofxP greatly influences the outcome of the integrals.

First we consider the case thatxP is in the interior of the domainΩ. In that case
we position a small circleBε with radiusε and boundaryΓε around the pointxP ,
such that the entire circle is in the interior ofΩ, as is shown in Figure 2.2. In this way
G does not have a singularity in the domainΩ − Bε and we have∇2

QG = 0 in this
new domain. Green’s second identity applied to the domainΩ −Bε becomes

∫

Γ+Γε

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ = 0, xP ∈ Ω, (2.8)

Note that no domain integrals appear in this identity. The remaining boundary
integral consists of two contributions; an integral overΓ and an integral over the
circular boundaryΓε. The outward normal onΓε is in the direction of the pointxP .
Therefore the local coordinateθ that describesΓε, runs in clockwise direction over
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the boundary,0 ≤ θ < 2π. To calculate the integral overΓε we note that
∂G

∂nQ
(xP ,xQ)

∣
∣
∣
xQ∈Γε

= −∂G
∂r

(xP ,xQ)
∣
∣
∣
xQ∈Γε

=
1

2πr

∣
∣
∣
xQ∈Γε

=
1

2πε
. (2.9)

Hence the integral overΓε amounts to
∫

Γε

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ

=
1

2π

2π∫

0

(

u(xQ)
1

ε
− log

1

ε
q(xQ)

)

εdθ

=
1

2π

2π∫

0

(

u(xQ) + ε log ε q(xQ)
)

dθ. (2.10)

As ε log ε → 0 for ε ↓ 0, the last integral approachesu(xP ) whenε tends to zero.
Substituting this in (2.8) we obtain

u(xP ) +

∫

Γ

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ = 0, (2.11)

for xP ∈ Ω. This identity relates the values ofu in internal pointsxP to values ofu
andq at the boundary.

Next we consider a pointxP at the boundaryΓ. Again we position a small circle
Bε with radiusε and boundaryΓε around the pointxP . A part of the circleBε lies
within the domainΩ; this part is denoted byB′

ε. Likewise, the part of the boundary
Γε that lies withinΩ is denoted byΓ′

ε, as is shown in Figure 2.3.
We apply Green’s second identity on the new domainΩ − B′

ε. In this domain
∇2u(xQ) = 0 and∇2

QG(xQ,xP ) = 0, since the singular pointxQ = xP is outside
the domain. The boundary of the domainΩ − B′

ε is given byΓ + Γ′
ε − Cε, where

Cε is the part of the boundaryΓ that lies withinB′
ε. Hence Green’s second identity

results in
∫

Γ+Γ′

ε−Cε

(

u(xQ)
∂G

∂nQ
(xQ,xP ) −G(xQ,xP )q(xQ)

)

dΓQ = 0, (2.12)

which can be split into an integral overΓ−Cε and an integral overΓ′
ε. Whenε tends

to zero, the integral overΓ − Cε becomes an integral over the whole boundaryΓ, i.e

lim
ε→0

∫

Γ−Cε

(

u(xQ)
∂G

∂nQ
(xQ,xP ) −G(xQ,xP )q(xQ)

)

dΓQ

=

∫

Γ

(

u(xQ)
∂G

∂nQ
(xQ,xP ) −G(xQ,xP )q(xQ)

)

dΓQ. (2.13)
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Figure 2.3: The pointxP lies on the boundary of the domain.

If the boundary is smooth andε is small, the circle segmentΓ′
ε will be the half of

the circleΓε. Therefore, whenε tends to zero, the integral overΓ′
ε equals half the

integral overΓε, i.e.

lim
ε→0

∫

Γ′

ε

(

u(xQ)
∂G

∂nQ
(xQ,xP ) −G(xQ,xP )q(xQ)

)

dΓQ

=
1

2

∫

Γε

(

u(xQ)
∂G

∂nQ
(xQ,xP ) −G(xQ,xP )q(xQ)

)

dΓQ. (2.14)

As shown in the case in whichxP is in the interior ofΩ, the latter integral approaches
u(xP ) asε→ 0. Substituting this result and (2.13) into (2.12) yields

1

2
u(xP ) +

∫

Γ

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ = 0, (2.15)

for xP ∈ Γ. This identity relates the boundary values ofu andq. No interior points
appear in the equation and thus we have obtained a boundary integral equation. By
solving this integral equation we find the values ofu andq at the boundary. Knowing
these values, equation (2.11) can be used to directly evaluateu at internal points. This
is one of the benefits of the BEM, i.e. internal values are obtained without having to
solve additional integral equations.

We can summarize the results in (2.11) and (2.15) with the integral equation

c(xP )u(xP ) +

∫

Γ

(

u(xQ)
∂G

∂nQ
(xP ,xQ) −G(xP ,xQ)q(xQ)

)

dΓQ = 0,

(2.16)
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where the functionc(xP ) is given by

c(xP ) :=

{
1, xP ∈ Ω,
1
2 , xP ∈ Γ.

(2.17)

ForxP ∈ Ω andxQ ∈ Γ we introduce two kernel functions,

Ks(xP ,xQ) := G(xP ,xQ) =
1

2π
log

1

r(xP ,xQ)
,

Kd(xP ,xQ) :=
∂G

∂nQ
(xP ,xQ) =

1

2π

〈xP − xQ,nQ〉
r2(xP ,xQ)

, (2.18)

where 〈x1,x2〉 is the standard inner product. These definitions turn the integral
equation into

c(xP )u(xP ) +

∫

Γ

(

Kd(xP ,xQ)u(xQ) −Ks(xP ,xQ)q(xQ)
)

dΓQ = 0.

(2.19)

At this point we introduce thesingle and double layer potential, given by

(
Ksq

)
(xP ) :=

∫

Γ

Ks(xP ,xQ)q(xQ)dΓQ, (2.20a)

(
Kdu

)
(xP ) :=

∫

Γ

Kd(xP ,xQ)u(xQ)dΓQ, (2.20b)

respectively. The operatorsKs and Kd are called thesingle and double layer
operator. With the potentials, we write the integral equation (2.19)in short-hand
notation,

(
cI + Kd

)
u = Ksq, (2.21)

whereI is the identity operator. In the sequel we assume that the functionsu and
q are as smooth as is required for the mathematical processes that they are involved
in. The boundary integral operatorsKs andKd are well-known and their continuity
properties have been investigated in detail [29]. Some basic results are presented in
the next section.

2.2 Operator theory

The boundary integral operatorsKs andKd have been the topic of extensive study.
In this section we list some basic results for these operators.
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Theorem 2.1 LetΩ be a bounded domain inR2 with smooth boundaryΓ. The single
layer operatorKs maps functions from the Sobolev spaceHr(Γ) isomorphically to
Hr+1(Γ).

Proof. See [14, p. 258, 287]. �

Theorem 2.2 Let Ω be a bounded domain inR2 with smooth boundaryΓ. The
boundary integral operatorK given by

Kf :=

∫

Γ

∂G

∂ny
f(y)dΓy +

1

2
f =

(
Kd +

1

2
I
)
f, (2.22)

is a so-called Fredholm operator with index zero that mapsHr(Γ) toHr(Γ).

Proof. See [14, p. 263, 289]. �

If the Fredholm operatorK has index zero it follows that the kernel ofK and the
kernel of its adjointK∗ have the same dimension. In Chapter 5 we make use of this
concept to apply the well-known Fredholm alternative.

Theorem 2.3 The single layer operatorKs is a compact and self-adjoint operator.

Sketch of proof. It can be proven that fork in L2([a, b] × [a, b]) and satisfying
k(s, t) = k(t, s) almost everywhere, the integral operatorK defined by

(Kf)(t) :=

∫ b

a
k(t, s)f(s)ds (2.23)

is compact and self-adjoint onL2([a, b]) [46]. After parameterisation of the
boundary, the operatorKs defined in this chapter can be written in this form, and
thusKs is compact and self-adjoint. Note that also the single layeroperator for the
Stokes equations, which will be introduced in Chapter 5, canbe written in a similar
way as (2.23). Hence the single layer operator for the Stokesequations is a compact
and self-adjoint operator. �

Theorem 2.4 The eigenvalues of the single layer operatorKs have an accumulation
point 0.

Sketch of proof. As Ks is compact and self-adjoint the spectral theorem can
be applied, which is formulated as follows [46]. LetK be a compact self-adjoint
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operator on a Hilbert spaceH. Then there exists an orthonormal systemφ1, φ2, . . . of
eigenvectors ofK and corresponding eigenvaluesλ1, λ2, . . . such that for allx ∈ H,

Kx =
∑

k

λk(x, φk)φk, (2.24)

where(·, ·) is an appropriate inner product onH. If {λk} is an infinite sequence, then
it converges to zero. We remark that the spectral theorem canalso be applied to the
single layer operator for the Stokes equations. �

The last theorem indicates that the eigenvalues of the boundary integral operator
Ks converge to zero, regardless of the domainΩ. In the next chapter we will
analytically compute the eigenvalues ofKs for a circular domain and we will see
that indeed the eigenvalues accumulate at0.

2.3 Algebraic Equations

To transform the integral equation into a system of algebraic equations, we start with
the integral equation as given in (2.19) and choosexP ∈ Γ,

1

2
u(xP ) +

∫

Γ

Kd(xP ,xQ)u(xQ)dΓQ =

∫

Γ

Ks(xP ,xQ)q(xQ)dΓQ. (2.25)

We selectN pointsyk, k = 1, . . . , N , at the boundaryΓ. Two consecutive points
are connected by a straight line elementΓk, which is called aboundary element. The
center of each element is referred to as acollocation nodexk. Then we replacexP

in (2.25) by thel-th collocation nodexl, l = 1, . . . , N , and replace the integral over
Γ by a sum of integrals overΓk, yielding

1

2
u(xl) +

N∑

k=1

∫

Γk

Kd(xl,xQ)u(xQ)dΓQ =

N∑

k=1

∫

Γk

Ks(xl,xQ)q(xQ)dΓQ,

(2.26)

for l = 1, . . . , N . At each elementΓk the functionsu andq are approximated by the
constant coefficientsuk := u(xk) andqk := q(xk) respectively. This gives us

1

2
ul +

N∑

k=1

uk

∫

Γk

Kd(xl,xQ)dΓQ =

N∑

k=1

qk

∫

Γk

Ks(xl,xQ)dΓQ, (2.27)

for l = 1, . . . , N . One can also choose to approximateu andq by linear, quadratic, or
even higher order functions. This does not make the BEM much more complicated,
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W

G k

x k

Figure 2.4: The boundary of the domain is approximated byN linear elements.

though the amount of work needed to solve the equations increases. In the subsequent
chapters we will use constant or linear approximations only.

We introduceN ×N matricesG andH by

Glk :=

∫

Γk

Ks(xl,xQ)dΓQ, l, k = 1, . . . , N,

Hlk :=

∫

Γk

Kd(xl,xQ)dΓQ, l, k = 1, . . . , N, (2.28)

and vectorsu andq by

u := [u1, . . . , uN ]T ,

q := [q1, . . . , qN ]T . (2.29)

Then equation (2.27) can be written as

1

2
u + Hu = Gq. (2.30)

With H̃ := 1
2I + H we have

H̃u = Gq. (2.31)

This linear system consists ofN algebraic equations, whereas there are2N
coefficients, namely the coefficientsuk andqk at theN elementsΓk. However, the
BVP (2.2) gives us Dirichlet and Neumann boundary conditions for u andq at the
boundary. IfΓk is a boundary element at which a Neumann condition is given, then
qk is a known coefficient whileuk is an unknown coefficient. Vice versa, ifΓk is
a boundary element at which a Dirichlet condition is given, thenuk is known and
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qk unknown. In this way the boundary conditions eliminateN coefficients and we
obtain a system ofN equations for the remainingN unknown coefficients.

At this point all coefficientsuk are at the left-hand side of (2.31), including the
ones that are known. All coefficientsqk are at the right-hand side, including the ones
that are unknown. Obviously, we want to have all the unknown coefficients on the
same side to solve the equations efficiently. For this goal weneed to reorder the
equations in a suitable way. Thel-th equation of (2.31) is given by

H̃l1u1 + H̃l2u2 + . . .+ H̃lNuN = Gl1q1 +Gl2q2 + . . .+GlNqN . (2.32)

Suppose thatu1 is given via a Dirichlet condition at the first elementΓ1 while q1 is
unknown. To move the term withu1 in (2.32) to the right-hand side and the term with
q1 to the left-hand side, we substractH̃l1u1 andGl1q1 from the equation, yielding

−Gl1q1 + H̃l2u2 + . . .+ H̃lNuN = −H̃l1u1 +Gl2q2 + . . . +GlNqN . (2.33)

In this way we move all unknown coefficients to the left-hand side and all known
coefficients to the right-hand side. Without loss of generality, we may assume that
the firstm boundary elements have Dirichlet conditions and the remaining N − m
have Neumann conditions. (We can always obtain such a situation by renumbering
the elements.) After reordering, thel-th equation is given by

−Gl1q1 − . . .−Glmqm + H̃lm+1um+1 + . . .+ H̃lNuN

= −H̃l1u1 − . . . − H̃lmum +Glm+1qm+1 + . . .+GlNqN , (2.34)

We defineN ×N matricesA andG̃ by

A :=






−G11 · · · −G1m H̃1m+1 · · · H̃1N
...

...
...

...
−GN1 · · · −GNm H̃Nm+1 · · · H̃NN




 ,

G̃ :=






−H̃11 · · · −H̃1m G1m+1 · · · G1N
...

...
...

...
−H̃N1 · · · −H̃Nm GNm+1 · · · GNN




 , (2.35)

and vectorsx andb by

x := [q1, . . . , qm, um+1, . . . , uN ]T ,

b := [u1, . . . , um, qm+1, . . . , qN ]T . (2.36)

With these definitions the equations can be written in the following way,

Ax = G̃b. (2.37)
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The proces described above can be formalized by introducingmatricesP1 andP2,

P1 :=

[
Im

∅

]

, P2 :=

[ ∅
IN−m

]

, (2.38)

whereIk is the identity matrix of sizek. The matrixP1 has sizeN × m and is a
matrix that selects the firstm columns from a matrix. Likewise, the matrixP2 is of
sizeN × (N −m) and selects the lastN −m columns from a matrix. With these
matrices,A andG̃ are constructed from̃H andG with

A = [−GP1 | H̃P2],

G̃ = [−H̃P1 | GP2], (2.39)

By introducingf := G̃b, the system in (2.37) is written as

Ax = f . (2.40)

This notation gives the linear system of equations in the standard form. The matrix
A is a dense matrix, but in many cases the matrix is not very large. For such a matrix
a direct solver can be used to solve the linear system.

2.4 Matrix Elements

The matricesA and G̃ are constructed from the matricesH and G, which are
obtained by evaluating the integrals given in (2.28). Suppose that the elementΓk

is a straight line fromx0 := (x0, y0)
T tox1 := (x1, y1)

T . A parameterisation of this
element is given by

x(ξ) :=
1

2
(x0 + x1) +

1

2
ξ(x1 − x0), (2.41)

whereξ is a local coordinate at the element,−1 ≤ ξ ≤ 1. The Jacobian of the
parameterisation is

J(ξ) :=

√
(
dx

dξ

)2

+

(
dy

dξ

)2

=
1

2

√

(x1 − x0)2 + (y1 − y0)2 =:
Lk

2
, (2.42)

whereLk is the length of elementΓk.
Substitution of the parameterisation and the Jacobian in the integrals of (2.28)
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Figure 2.5: The local representation of an element.

yields the following expressions for the matrix elements,

Glk =
1

2π

∫

Γk

log
1

r(xl,xQ)
dΓQ

= −Lk

4π

1∫

−1

log

∥
∥
∥
∥
xl −

x0 − x1

2
− ξ

x1 − x0

2

∥
∥
∥
∥
dξ,

Hlk =
1

2π

∫

Γk

〈xl − xQ,nQ〉
r2(xl,xq)

dΓQ

=
Lk

4π

1∫

−1

〈xl − x0−x1

2 − ξx1−x0

2 ,nQ〉
‖xl − x0−x1

2 − ξx1−x0

2 ‖2
dξ. (2.43)

When l 6= k, the integrands are nonsingular and we can evaluate the integrals by
using standard numerical integration, see Section 2.5.

Whenl = k, the collocation pointxl is in the center of the element over which
is integrated. As a consequence the integrands have a (logarithmic) singularity and
we cannot use standard numerical integration schemes. However, in this case we can
evaluate the integrals analytically. Since the integrand in Gll is symmetric inr we
only need to parametrise one half of the element, i.e.

x(ξ) := xl − ξ(xl − x1), (2.44)

where0 ≤ ξ ≤ 1. The Jacobian of this parameterisation is

J(ξ) :=

√
(
dx

dξ

)2

+

(
dy

dξ

)2

=
√

(xl − x1)2 + (yl − y1)2 =
1

2
Ll. (2.45)
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This leads to the following expression for the matrix element Gll,

Gll =
1

2π

∫

Γl

log
1

r(xl,xQ)
dΓQ = −2 · 1

2π

1∫

0

log
(1

2
Llξ

)
dξ · 1

2
Ll

=
Ll

2π
(1 + log

2

Ll
). (2.46)

To compute the matrix elementHll, the inner product〈xl − xQ,nQ〉 has to be
evaluated. Here the vectorxl −xQ coincides with the elementΓl, as bothxl andxQ

are atΓl. Hence this vector is perpendicular to the normalnQ at the elementΓl, and
consequently〈xl − xQ,nQ〉 = 0, for all xQ ∈ Γl. This implies that the diagonal
elementsHll vanish,

Hll = 0. (2.47)

2.5 Numerical integration

After parameterisation of the boundary elements, the integrals that have to be
evaluated are of the form

∫ 1

−1
f(ξ)dξ. (2.48)

If f is nonsingular on the interval[−1, 1], we may approximate the integral with a
standardGauss-Legendre quadraturescheme,

∫ 1

−1
f(ξ)dξ ≈

m∑

i=1

wif(ξi), (2.49)

whereξi are theknotsandwi theweights. If f has a weak or logarithmic singularity at
the interval[−1, 1], we either have to resort to analytical expressions as described in
the previous section, or use special numerical integrationschemes for integrals with
weak or logarithmic singularities. For an integral with a kernel that has a logarithmic
singularity the following approximation is often used [34,88],

∫ 1

0
f(ξ) log ξdξ ≈=

m∑

i=1

w̃if(ξ̃i), (2.50)

whereξ̃i andw̃i are the knots and weights for the quadrature rule with logarithmic
weight function. Note that the integration interval for this approximation runs from
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Figure 2.6: Two boudary parts are separated by a distanced.

zero to one, so a transformation of the original integrationinterval is required to apply
this quadrature rule.

One other situation in which the numerical integration needs special attention
is a geometry with a thin structure. If two boundaries or parts of a boundary are
separated by a small distanced, some integrals become near singular and are difficult
to evaluate numerically. This is caused by the fact that, forsmall d, a collocation
nodexl at one boundary approaches an elementΓk over which is integrated at the
other boundary, see Figure 2.6. This phenomenon is calledthin-shape breakdown
(TSB) and has been reported for the Helmholtz boundary integral equation [32, 69].
In this thesis we show that a similar phenomenon occurs for the BIE for the Stokes
equations in 2D (Section 5.6). In this case, the Gauss-Legendre quadrature is not
accurate enough. A more efficient way to evaluate the integrals is by using an
adaptive numerical integration scheme.



Chapter 3

Laplace equation at
two-dimensional domain

In the current chapter and the subsequent chapter we investigate the boundary integral
equation (BIE) for the Laplace equation on a two-dimensional domain. It turns out
that for certain sizes and shapes of the domain this BIE is singular. In this chapter we
concentrate on Laplace equations on circular domains. Due to the symmetry of these
domains the boundary integral operators can be analysed easily. In particular it is
possible to compute the eigenvalues of the integral operators analytically. Moreover,
in the case of Dirichlet or Neumann boundary conditions it ispossible to use these
eigenvalues to derive a accurate estimate for the conditionnumber of the BEM-
matrices. Also for mixed boundary conditions an estimate for the condition number
of the BEM-matrix can be obtained by combining the information from the Dirichlet
and Neumann problems.

3.1 Eigenvalues ofKs andKd

In many BIEs thesingle and double layer operatorappear. The analysis of these
boundary integral operators is a well-chartered area. Manypapers discuss the spectral
properties of the Laplace and Helmholtz integral operatorsas well as the eigenvalues
of the corresponding discrete operators [1, 15]. When constructing preconditioners
for the BEM-matrices, the spectral properties of the boundary integral operators also
need to be addressed [71, 81, 87]. We use the spectral properties of the boundary
integral operators to investigate the condition numbers oftheir discrete counterparts,
the BEM-matrices. First we compute the eigenvalues of the operators for a circle.

For a circular domainΩ with radiusR it is possible to compute the eigenvalues

24
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of the boundary integral operatorsKs andKd analytically. First we introduce polar
coordinates(ρ, θ) and(ρ′, θ′), and write the pointsx andx′ in Ω as

x = ρ (cos θ, sin θ)T ,

x′ = ρ′ (cos θ′, sin θ′)T , 0 < ρ, ρ′ < R, 0 < θ, θ′ < 2π. (3.1)

Using these new coordinates the distancer(x,x′) between two pointsx andx′ at the
boundaryΓ is given by

r2(x,x′) = 2R2[1 − cos(θ − θ′)], x,x′ ∈ Γ, (3.2)

while the normaln ≡ n(θ′) at a pointx′ ∈ Γ is given byn = [cos θ′, sin θ′]T .
Substitution of these expressions in the single and double layer potentials yields

(Ksq)(θ) =
−R
4π

2π∫

0

[

2 logR+ log
(

2 − 2 cos(θ − θ′)
)]

q(θ′)dθ′,

(Kdu)(θ) =
−1

4π

2π∫

0

u(θ′)dθ′. (3.3)

The eigenvalues of the double layer operatorKd are easily computed. We
subsequently insert foru the functions1, cos(kθ), andsin(kθ), k = 1, 2, . . ., and
find

Kd1 = − 1

4π

2π∫

0

dθ′ = −1

2
,

Kd cos(kθ) = − 1

4π

2π∫

0

cos(kθ′)dθ′ = 0,

Kd sin(kθ) = − 1

4π

2π∫

0

sin(kθ′)dθ′ = 0. (3.4)

From this we conclude that−1/2 is an eigenvalue ofKd with eigenfunctionu = 1,
and 0 is an eigenvalue with eigenfunctionsu = cos(kθ) andu = sin(kθ), k =
1, 2, . . ..

To determine the eigenvalues of the single layer operatorKs we introduce the
functionf(x) := log(2 − 2 cos x). The Fourier series of this function is

f(x) ∼ −
∞∑

n=1

2

n
cos(nx). (3.5)
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eigenvaluesKs eigenfunctionsKs

−R logR 1
R
2k sin(kθ)

cos(kθ)

eigenvaluesKd eigenfunctionsKd

−1
2 1

0 sin(kθ)

cos(kθ)

Table 3.1: The eigenvalues and eigenfunctions ofKs andKd for Ω a circle with radiusR.

We setx := θ − θ′ and substitute the series in the single layer potential to obtain

(Ksq)(θ) = − R

4π

2π∫

0

[

2 logR−
∞∑

n=1

2

n
cosn(θ − θ′)

]

q(θ′)dθ′

= − R

4π

2π∫

0

[

2 logR−
∞∑

n=1

2

n

(

cos(nθ) cos(nθ′)

+ sin(nθ) sin(nθ′)
)]

q(θ′)dθ′. (3.6)

Also for q we insert the functions1, cos(kθ), andsin(kθ), k = 1, 2, . . .. Using some
well-known results for integrals of products of trigonometric functions, we find

Ks1 = − R

4π

2π∫

0

2 logRdθ′ = −R logR,

Ks cos(kθ) = − R

4π

2π∫

0

(

−2

k
cos(kθ) cos2(kθ′)

)

dθ′ =
R

2k
cos(kθ),

Ks sin(kθ) = − R

4π

2π∫

0

(

−2

k
sin(kθ) sin2(kθ′)

)

dθ′ =
R

2k
sin(kθ). (3.7)

From this we conclude that−R logR is an eigenvalue ofKs with eigenfunction
q = 1, andR/2k is an eigenvalue with eigenfunctionsq = cos(kθ) andq = sin(kθ),
for k = 1, 2, . . ..

Table 3.1 gives an overview of the eigenvalues and eigenfunctions of the operators
Ks andKd for a circle with radiusR, cf. [1, 15].
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3.2 Eigenvalues of the matrices

In this section we investigate the eigenvalues of the BEM-matricesG andH, which
originate from the operatorsKs andKd, see Chapter 2. In particular we are interested
in the correspondence between the eigenvalues of the integral operators and the
eigenvalues of the matrices.

First we investigate the correspondence between the eigenvalues of the integral
operatorKs and the eigenvalues ofG. We do this for the caseR = 1. Using the
results from the previous section, we know that the integraloperator has the following
eigenvalues,

λk(Ks) ∈ {1/2, 1/4, 1/6, 1/8, . . . , 0} . (3.8)

N λ1(G) λ2(G) λ3(G) λ4(G) λN (G)

8 0.5122 0.2472 0.1686 0.1482 −2.0 · 10−2

16 0.5031 0.2480 0.1627 0.1207 −3.9 · 10−3

32 0.5008 0.2493 0.1652 0.1230 −8.9 · 10−4

64 0.5002 0.2498 0.1663 0.1244 −2.1 · 10−4

128 0.5000 0.2500 0.1666 0.1248 −5.1 · 10−5

Table 3.2: The four largest eigenvalues ofG and the smallest forR = 1.

Let N be the number of boundary elements atΓ. ThenG has sizeN × N
and hasN eigenvaluesλ1(G) ≥ . . . ≥ λN (G). In Table 3.2 we give the four
largest eigenvaluesλ1, λ2, λ3 andλ4 and the smallest eigenvalueλN of the matrix
G for several values ofN . We observe that the eigenvalues ofG approximate
the eigenvalues ofKs. The numerical test shows that the largest eigenvalue of
G converges to the corresponding eigenvalue ofKs with O(N−2). The other
eigenvalues in Table 3.2 converge to the corresponding eigenvalues ofKs slower.
In general the convergence for the smallest eigenvalue is the slowest.

Further on in this chapter we need the eigenvalues ofG to compute the condition
number ofG, in particular the largest and smallest eigenvalue. Table 3.2 shows that
we can approximate these eigenvalues by the corresponding eigenvalues ofKs. We
observe that the eigenvalues are approximated rather well.

In Figure 3.1 we show the relative error made by approximating the largest and
smallest eigenvalues ofG by the largest and smallest eigenvalues ofKs. In this case
we chooseR = 2. We see that the error for the largest eigenvalue decreases rapidly to
zero. The error for the smallest eigenvalue is much larger, approximately16%. Later
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Figure 3.1: The errors for approximating the largest and smallest eigenvalue ofG by the
largest and smallest eigenvalue ofKs for R = 2.

on we will see which influence these errors have on the estimates of the condition
number of the system matrices.

The results from Section 3.1 show that the boundary integraloperatorKd has
only two distinct eigenvalues. Letλ1(H) ≥ . . . ≥ λN (H) be the eigenvalues of
H, then we may expect that the firstN − 1 eigenvalues will be (almost) equal.
Hence it is sufficient to studyλ1(H) andλN (H). The eigenvalues of the integral
operatorKd are independent ofR, so we may expect that the eigenvalues of the
corresponding BEM-matrixH are also independent ofR. Hence we chooseR = 1
and compute the eigenvalues ofH for several values ofN . Table 3.3 shows the largest
and smallest eigenvalue ofH, which approach the eigenvalues ofKd asN goes to
infinity. The numerical test shows that the rate by which thishappens is1/N . Hence
the eigenvalues ofKd provide accurate estimates of the eigenvalues of the BEM-
matrixH. However, for the circular domain we can even compute the eigenvalues of
H analytically. Indeed, for the matrix elements ofH we find for l 6= k,

Hlk =

∫

Γk

Kd(xP ,xQ)dΓQ = − 1

4πR

∫

Γk

dΓQ = − 1

4πR
Lk, (3.9)

with Lk the length of elementΓk. Note that all elements have equal length, namely
Lk = 2R tan(π/N). Substituting this in the matrix elements above results in

Hlk = − 1

2π
tan

π

N
, l 6= k. (3.10)
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N λN (H) λ1(H) abs. errorλ1(H)

8 6.59 · 10−2 −0.462 3.85 · 10−2

16 3.17 · 10−2 −0.475 2.51 · 10−2

32 1.57 · 10−2 −0.486 1.41 · 10−2

64 7.82 · 10−3 −0.493 7.40 · 10−3

128 3.91 · 10−3 −0.496 3.80 · 10−3

256 1.95 · 10−3 −0.498 1.90 · 10−3

Table 3.3: The eigenvalues ofH for R = 1.

Recall that the diagonal elements ofH are equal to zero (see (2.47)). Thus the matrix
H has a very simple structure, namely zeros on the diagonal, and the same non-
zero number in all off-diagonal elements. For such a matrix the eigenvalues can be
computed analytically, which results in

λ1(H) = −N − 1

2π
tan

π

N
≈ −1

2
+

1

2N
+ O

(
1

N3

)

,

λN (H) =
1

2π
tan

π

N
≈ 1

2N
+ O

(
1

N3

)

. (3.11)

One may verify that these expressions give the same eigenvalues as presented in
Table 3.3.

3.3 Dirichlet problem

In the subsequent sections we investigate the condition number of the matrices that
appear in the BEM. For a generalN ×N matrixA, the condition number is defined
as the ratio of the largest and smallest singular value,

cond(A) :=
σmax(A)

σmin(A)
. (3.12)

For symmetric matrices the singular values are equal to the absolute values of the
eigenvalues. Hence whenA is symmetric, the condition number is computed as

cond(A) :=
max |λ(A)|
min |λ(A)| . (3.13)

Consider the Laplace equation on the circle with Dirichlet boundary conditions.
In this case,u = ũ is prescribed at the whole boundary. The BIE (2.21) reduces to

Ksq = f. (3.14)
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Here f := (1
2I + Kd)ũ is a known function depending on the boundary dataũ.

Similarly the algebraic equations (2.30) reduce to

Gq = f , (3.15)

wheref := (1
2I+H)u is a known vector. As theN elements and nodes are uniformly

distributed over the boundaryΓ, the matrixG is symmetric. In that case the condition
number ofG can be computed as the ratio of largest and smallest eigenvalue ofG.
Let N be even. Then theN eigenvalues ofG may be approximated by the firstN
eigenvalues ofKs,

−R logR,
R

2k
,

R

N
, (3.16)

with k = 1, 2, . . . , N/2 − 1 and where the eigenvaluesR/2k have geometric
multiplicity two and the other eigenvalues geometric multiplicity one. The condition
number can thus be approximated by

cond(G) ≈
max

((
max1≤k≤N/2−1

R
2k

)
, R | logR|

)

min
((

min1≤k≤N/2−1
R
2k

)
, R | logR|

)

=
max

(
1
2 , | logR|

)

min
(

1
N , | logR|

) . (3.17)

In Figure 3.2 we plot the approximation of (3.17) as a function of the radiusR
for four different values ofN : 4, 8, 12, and16. Note that the behaviour of the
condition number as shown in the figure is in good agreement with the results in
literature [19, 20]. ForR = 1 the condition number jumps to infinity. This implies
that the linear systemGq = f is singular for the unit circle. In Chapter 4 we elaborate
on modifications of the standard BEM formulation to avoid such singular systems.
ForR → 0 the condition number also increases to infinity, reflecting the equations
becoming singular when the domain shrinks to a single point.In Figure 3.2 a number
of regimes can be distinguished, in which the behaviour of the condition number is
different. To distinguish these regimes we write the estimate of the condition number
in (3.17) as

cond(G) ≈







1
2| log R| e−1/N ≤ R < 1 and1 < R ≤ e1/N ,

N
2 e−1/2 ≤ R ≤ e−1/N ande1/N ≤ R ≤ e1/2,

N | logR| 0 ≤ R ≤ e−1/2 ande1/2 ≤ R <∞.

(3.18)

To study the accuracy of the approximation in (3.17), we chooseR = 2 and
N ≥ 2. In that casee1/2 ≤ R <∞ and the condition number ofG is estimated by

cond(G) ≈ N log 2. (3.19)
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Figure 3.2: The approximation of the condition number ofA as a function of the radiusR
for several values ofN .

N cond(G) estimate error cond(G) for estimate error
N logR (%) modified fund. sol. N/2 (%)

8 5.06 5.55 9.7 3.68 4 8.0
16 9.65 11.09 14.9 6.96 8 14.9
32 19.09 22.18 16.2 13.75 16 16.4
64 38.07 44.36 16.5 27.44 32 16.6

128 76.09 88.72 16.6 54.88 64 16.6

Table 3.4: The exact condition number ofG, and its approximation, for standard BEM and
for BEM with a modified fundamental solution.

In the second and third column of Table 3.4, we give the true value of condition
number ofG and its estimate for several values ofN . In the fourth column we
give the relative error between true value and its estimate.This error is related to
the difference between the eigenvalues of the matrixG and the eigenvalues of the
operatorKs.

In Figure 3.2 and (3.18) we observe that the condition numberof G has a minimal
value ofN/2 for e−1/2 ≤ R ≤ e−1/N ande1/N ≤ R ≤ e1/2. By rescaling the circle
such that its new radius is in one of these two intervals, the condition number can
be minimized. Another way to minimize the condition number,is by modifying the
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fundamental solution of the Laplace operator by including afactorα,

Gα(r) =
1

2π
log

(α

r

)

. (3.20)

This changes the eigenvalue−R logR of Ks to −R log(R/α). In that case the
estimate for the condition number ofG becomes

cond(G) ≈ max
(

1
2 , | logR/α|

)

min
(

1
N , | logR/α|

) . (3.21)

By choosingα = Re−1/2 the nominator reduces to1/2 and the denominator to1/N .
As a consequence we havecond(G) ≈ N/2, which is the smallest value reached in
Figure 3.2. This agrees with the theory that the condition number of the BEM-matrix
for a Laplace equation with Dirichlet conditions on any 2D domain can be minimized
toO(N) [97]. In the last three columns of Table 3.4 we show the effectof the strategy
of modifying the fundamental solution. We give the true condition number ofG with
modified fundamental solution, the corresponding estimateof N/2, and the relative
error. We observe that the condition number for the new matrix is approximately
25% smaller than the condition number of the original matrix. The most important
gain however is that the condition number does not become infinitely large anymore.

3.4 Neumann problem

In this section we study the Laplace equation on a circle withNeumann boundary
conditions. In this caseq = q̃ is known at the whole boundary and the BIE (2.21)
reduces to

(
1

2
I + Kd)u = f. (3.22)

Heref := Ksq̃ is a known function depending on the boundary data. Similarly the
algebraic equations (2.30) reduce to

H̃u = f , (3.23)

wheref := Gq is a known vector. As theN elements and nodes are uniformly
distributed over the boundaryΓ, the matrixH̃ is symmetric. Hence the singular
values of H̃ are equal to the absolute values of the eigenvalues ofH̃, and
consequently

cond(H̃) =
σmax(H̃)

σmin(H̃)
=

λ1(H̃)

λN (H̃)
. (3.24)
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Figure 3.3: The condition number of̃H as a function ofN .

Note that bothλ1(H̃) andλN (H̃) are positive. As the exact eigenvalues ofH are
known andH̃ = 1

2I + H we thus find

λ1(H̃) =
1

2
+

1

2π
tan

( π

N

)

,

λN (H̃) =
1

2
− N − 1

2π
tan

( π

N

)

. (3.25)

Consequently the condition number ofH̃ is equal to

cond(H̃) =
π + tanπ/N

|π − (N − 1) tan π/N | . (3.26)

In Figure 3.3 we show the condition number ofH̃ as a function ofN . ForN ≥ 10,
the condition number shows a strong linear behaviour inN . Realizing that for large
N we havetan π/N ≈ π/N , we find for the condition number

cond(H̃) ≈ π + π/N

π − (N − 1)π/N
= N + 1, (3.27)

which confirms the linear behaviour from the figure.
The Laplace equation with Neumann boundary conditions is inessence an ill-

posed problem. This is reflected by the zero eigenvalue of theboundary integral
operator12I +Kd; the corresponding BIE (3.22) is singular. Hence we may expect a
singular system for the discrete equationsH̃u = f , i.e. an infinitely large condition
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number ofH̃. Nevertheless, the condition number ofH̃ only grows linearly withN .
This is a consequence of the discretisation of the problem. The smallest eigenvalue
of the discrete problem, i.e. the smallest eigenvalue ofH̃, is not exactly equal to
zero, but approaches zero as the discretisation of the boundary becomes finer, i.e. the
number of elementsN increases.

3.5 Mixed boundary conditions

In this section we consider the Laplace equation on a circle with mixed boundary
conditions. We assume that the firstm elements of the boundary have Dirichlet
boundary conditions and the lastN − m elements Neumann conditions. We can
always reach such a situation by renumbering the elements. The BIE reads

(1

2
I + Kd

)
u = Ksq, (3.28)

while the set of algebraic equations is given by
(1

2
I + H

)
u = Gq. (3.29)

As described in Section 2.3 the latter equations can be written as

Ax = f , (3.30)

where the matrixA is constructed from the matricesG andH̃ by

A = [−GP1 | H̃P2]. (3.31)

In this section we derive an estimate for the condition number of the BEM-matrixA.
Due to the symmetry of the boundary discretisation the matricesG andH̃ are

circulant matrices [33]. Given the first row of such a matrix, one obtains the other
rows by a cyclic shift of the first row. An important property of a circulant matrixX
is that it can be decomposed asX = F∗ΛF, whereΛ is a diagonal matrix containing
the eigenvalues ofX. The matrixF is the so-calledFourier matrix, whose elements
are defined by

F ∗
lk :=

1√
N
w(l−1)(k−1), (3.32)

The asterisk denotes complex conjugation andw := e2πi/N is theN -th root of unity.
The Fourier matrixF is a unitary matrix. We apply the decomposition property of
circulant matrices toG andH̃,

G = F∗ΛGF,

H̃ = F∗ΛHF. (3.33)
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Here ΛG and ΛH are diagonal matrices containing the eigenvalues ofG and H̃

respectively. Here the eigenvalues ofG are replaced by the eigenvalues ofKs and
for the eigenvalues of̃H we use the exact expressions in (3.25) Substituting the
decompositions forG andH̃ in (3.31), we writeA as

A = F∗[−ΛGFP1 | ΛHFP2]. (3.34)

We defineF1 := FP1 andF2 := FP2 to find

A = F∗[−ΛGF1 | ΛHF2]. (3.35)

By introducing two other diagonal matricesΛ and D by Λ := Λ
1/2
G Λ

−1/2
H and

D := Λ
1/2
G Λ

1/2
H , we obtain∗

A = F∗D[−ΛF1 | Λ−1F2]. (3.36)

We also introduce QR-decompositions ofΛF1 andΛ−1F2 as

ΛF1 = Q1U1,

Λ−1F2 = Q2U2. (3.37)

The columns ofQ1 andQ2 form bases of the subspaces which are spanned by the
columns ofΛF1 andΛ−1F2. The matricesU1 andU2 are upper triangular matrices.
With these decompositionsA can be written as

A = F∗D
[

−Q1 | Q2

]

︸ ︷︷ ︸

Q

[
U1 ∅
∅ U2

]

︸ ︷︷ ︸

U

= F∗DQU. (3.38)

Since the unitary matrixF has condition number equal to1 we find

cond(A) ≤ cond(D) cond(Q) cond(U). (3.39)

Hence to bound the condition number ofA we need estimates of the condition
numbers of the matricesD, Q andU.

Estimating cond(D)

The matrixD is the product of two diagonal matrices of which we can approximate
or determine the singular values, namelyΛG andΛH. For convenience we list the

∗DefiningΛ andD as the square root ofΛG andΛH may yield complex numbers when a diagonal
element ofΛG or ΛH is negative. However, in order to estimate the condition numbers, we only need
to evaluate thesquaredsingular values ofΛ andD, thus avoiding complex numbers.
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Figure 3.4: Condition number ofD as a function ofN withR = 1/2 andm = N/2. Dots
represent the exact values while the dashed line representsthe estimate.

largest and smallest singular value ofD squared,

σ1(D)2 = σ1

(

Λ
1/2
G Λ

1/2
H

)2
= σ1 (ΛGΛH)2 = max

l
[ΛGΛH ]ll

= max

{

R| logR|
[
1

2
− N − 1

2π
tan

π

N

]

,
R

4
+
R

4π
tan

π

N

}

,

σN (D)2 = σN

(

Λ
1/2
G Λ

1/2
H

)2
= σN (ΛGΛH)2 = min

l
[ΛGΛH ]ll

= min

{

R| logR|
[
1

2
− N − 1

2π
tan

π

N

]

,
R

2N
+

R

2Nπ
tan

π

N

}

.

(3.40)

The condition number ofD is the square root of the ratio of these two expressions.
Figure 3.4 shows the condition number ofD as a function ofN . The dots give the
exact value of the condition number while the dashed line represents the estimate
as constructed in this section. We observe that there is a very good correspondence
between exact values and the estimated values.
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Estimating cond(Q)

TheKantorovich-Wielandt angleθ is found by taking pairs of orthogonal vectorsx

andy and calculating the smallest angle between their images underQ [48],

cos θ := max
x⊥y

|(Qx,Qy)|
‖Qx‖‖Qy‖ . (3.41)

The condition number ofQ is related to the Kantorovich-Wielandt angle by

cond(Q) = atan(θ/2), (3.42)

It can be proven that the angleθ is the angle between the two subspaces spanned by
the columns ofΛF1 andΛ−1F2.

Lemma 3.1 The Kantorovich-Wielandt angleθ is equal to the angle between the two
subspaces spanned by the columns ofΛF1 andΛ−1F2.

Proof. The angleα between the two subspaces that are spanned by the columns of
ΛF1 andΛ−1F2 is defined as [8]

cosα := max
ξ1∈R(ΛF1)

max
ξ2∈R(Λ−1F2)

|(ξ1, ξ2)|
‖ξ1‖‖ξ2‖

. (3.43)

To evaluate the Kantorovich-Wielandt angle we realize the following. The matrixQ
consists of two blocks, and therefore we select two special vectorsx andy, namely
x = [xT

1 | 0, . . . , 0]T andy = [0, . . . , 0 | yT
1 ]T , wherex1 ∈ R

m andy1 ∈ R
N−m.

Clearly we havex ⊥ y. Moreover, we observe thatQx = −Q1x1 andQy = Q2y1.
We substitute this into the definition of the Kantorovich-Wielandt angle and find

cos θ = max
x1∈Rm

max
y1∈RN−m

|(Q1x1,Q2y1)|
‖Q1x1‖‖Q2y1‖

. (3.44)

Recall that the columns of the matricesQ1 andQ2 form an orthogonal basis for
the subspaces spanned by the columns ofΛF1 andΛ−1F2. This means that we can
introduceξ1 ∈ R(ΛF1) andξ2 ∈ R(Λ−1F2) such thatξ1 = Q1x1 andξ2 = Q2y1.
Then (3.44) becomes

cos θ = max
ξ1∈R(ΛF1)

max
ξ2∈R(Λ−1F2)

|(ξ1, ξ2)|
‖ξ1‖‖ξ2‖

, (3.45)

which is the definition of the angle between the subspaces. Thus the Kantorovich-
Wielandt angleθ is equal to the angleα between the two subspaces. �



38 Chapter 3 Laplace equation at two-dimensional domain

Lemma 3.1 is used to prove the following theorem.

Theorem 3.2 The condition number ofQ is equal to1.

Proof. The angleθ can be calculated from

cos θ = max
x∈R(ΛF1)

max
y∈R(Λ−1F2)

|(x,y)|
‖x‖‖y‖

= max
x∈R(F1)

max
y∈R(F2)

|(Λ−1x,Λy)|
‖Λ−1x‖‖Λy‖

= max
x∈R(F1)

max
y∈R(F2)

|(Λ∗Λ−1x,y)|
‖Λ−1x‖‖Λy‖ . (3.46)

For 0 < R ≤ 1, Λ is a diagonal matrix with real elements, henceΛ∗ = Λ, and we
find

cos θ = max
x∈R(F1)

max
y∈R(F2)

|(x,y)|
‖Λ−1x‖‖Λy‖ . (3.47)

However, sinceR(F1) ⊥ R(F2), the inner product between the vectorsx ∈ R(F1)
andy ∈ R(F2) is equal to zero. Hencecos θ = 0 and consequentlycond(Q) = 1.

For R > 1, the first diagonal element ofΛG is negative, and hence the first
diagonal element ofΛ = Λ

1/2
G Λ

−1/2
H is imaginary. In that case

(Λ−1x,Λy) =

(

− i

a1

)

(ia1)x1y1 + x2y2 + . . .+ xNyN = 0, (3.48)

whereaj , j = 1, . . . , N , are the diagonal elements ofΛ. So also in the caseR > 1
cos θ = 0 andcond(Q) = 1. �

Since the condition number ofQ is equal to one, it is interesting to note thatQ is
a unitary matrix.

Corollary 3.3 The matrixQ is unitary.

Proof. Recall that the matrixQ consists of a unitaryN×m blockQ1 and a unitary
N× (N −m) blockQ2. Accordingly we can split any vectorx ∈ R

N into two parts,
x = [xT

1 ;xT
2 ]T . The matrix-vector productQ∗Qx then reads

Q∗Qx =

[
x1 − Q∗

1Q2x2

−Q∗
2Q1x1 + x2

]

. (3.49)

The subspaces that are spanned by the columns ofΛF1 and Λ−1F2 are
perpendicular. The matricesQ1 and Q2 are bases of these subspaces, and
consequentlyQ∗

1Q2 = Q∗
2Q1 = 0. Thus we findQ∗Qx = x. Likewise we can

prove thatQQ∗x = x. HenceQ∗Q = QQ∗ = I andQ is a unitary matrix. �
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Estimating cond(U)

To estimate the condition number ofU we need estimates of the singular values of
U1 andU2. For this observe that

σk(U1) = σk(Q1U1) = σk(ΛF1) ≤ σk(Λ)σ1(F1) = σk(Λ),

σk(U2) = σk(Q2U2) = σk(Λ
−1F2) ≤ σk(Λ

−1)σ1(F2) = σk(Λ
−1),

(3.50)

for k = 1, . . . ,m andk = 1, . . . , N −m respectively. Here we used the facts that
Qi andFi have orthogonal columns and have singular values1. We also made use
of estimates of the singular values of products of matrices [47]. Furthermore, with
F1 = Λ−1Q1U1 andF2 = ΛQ2U2 we obtain

1 = σk(F1) = σk(Λ
−1Q1U1) ≤ σ1(Λ

−1)σk(Q1U1) = σ1(Λ
−1)σk(U1),

1 = σk(F2) = σk(ΛQ2U2) ≤ σ1(Λ)σk(Q2U2) = σ1(Λ)σk(U2),

(3.51)

for k = 1, . . . ,m andk = 1, . . . , N − m respectively. This yields the following
lower bounds,

σk(U1) ≥ 1

σ1(Λ
−1)

= σN (Λ), k = 1, . . . ,m,

σk(U2) ≥ 1

σ1(Λ)
= σN (Λ−1), k = 1, . . . , N −m. (3.52)

With (3.50) and (3.52) we have upper and lower bounds for the singular values of
U1 andU2. The singular values ofU are the singular values ofU1 plus the singular
values ofU2, i.e. σ(U) = σ(U1)

⋃
σ(U2). For the condition number ofU we

obtain

cond(U) =
σ1(U)

σN (U)
≤ max

{
σ1(Λ), σ1(Λ

−1)
}

min
{
σN (Λ), σN (Λ−1)

}

=

max

{

σ1(Λ), 1
σN (Λ)

}

min

{

σN (Λ), 1
σ1(Λ)

}

= max

{

σ1(Λ)2,
1

σN (Λ)2

}

. (3.53)
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Figure 3.5: Condition number ofU as a function ofN , whereR = 1/2 andm = N/2. The
dashed line is the estimate whereas the large dots give the exact value for several values ofN .

SinceΛ is the product of the square roots ofΛG andΛ−1
H , we can derive its singular

values, resulting in

σ1(Λ)2 = max

{
2πR| logR|

π − (N − 1) tan π/N
,

πR

π + tan π/N

}

,

σN (Λ)2 = min

{
2πR| logR|

π − (N − 1) tan π/N
,

2πR/N

π + tanπ/N

}

. (3.54)

We plot the condition number ofU and its approximation in Figure 3.5. As
is seen from (3.53), the approximation provides an upper bound for the condition
number ofU. The difference between the exact value and the estimate corresponds to
the error that is made by approximating the smallest eigenvalue ofG by the smallest
eigenvalue ofKs.

Estimating cond(A)

The condition number ofA is estimated by the product of condition numbers ofD

andU, where the condition number ofU is obtained from the singular values ofΛ.
Let us use a first order approximation fortan π/N to approximate the largest and
smallest singular values of the matricesD andΛ as given in (3.40) and (3.54). We
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find

σ1(D)2 ≈ R

4N
max

(
2| logR|, N + 1

)
,

σN (D)2 ≈ R

2N
min

(

| logR|, 1 +
1

N

)

,

σ1(Λ)2 ≈ RN max
(

2| logR|, 1

N + 1

)

,

σN (Λ)2 ≈ 2RN min
(

| logR|, 1

N(N + 1)

)

. (3.55)

For a circle with radiusR = 1/2 we obtain

cond(D) ≈
√

N + 1

2 log 2
,

cond(U) . N + 1, (3.56)

wich gives the following estimate for the condition number of A,

cond(A) .
1√

2 log 2
(N + 1)3/2. (3.57)

Figure 3.6 shows this estimate for the condition number. Thedashed line gives
the estimate as a function ofN , whereas the dots give the exact value of the condition
number for several values ofN . For this example we choosem = N/2, i.e. as many
elements with Dirchlet conditions as elements with Neumannconditions. However,
the parameterm does not appear in the estimates, and will not play any role. We
observe that the estimate is of higher order than the actual value of the condition
number. In fact the condition number ofA turns out to be linear inN , while the
estimate is of orderN3/2. Later on we will show how this discrepancy is caused.

Figure 3.7 gives the condition number ofA and its estimate as a function ofR.
We chooseN = 12 andm = 6. Again the estimate isO(N3/2), while the actual
value isO(N). The estimate does capture the large condition number atR = 1
though.

Let us recapitulate the steps that we have taken to bound the condition number
of the matrixA. We decomposedA in a product of matrices and derived that
cond(A) ≤ cond(D)cond(U). We can evaluate or approximate the condition
numbers ofD andU very well, but the condition number ofA is over-estimated.
This must be caused by the decomposition ofA. As a simple example, consider the
matricesX andY, given by

X :=

[
1 0
0 ε

]

, Y :=

[
1 0
0 1/ε

]

, (3.58)
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Figure 3.6: Condition number ofA as a function ofN , whereR = 1/2 andm = N/2. The
dashed line is the estimate whereas the large dots give the exact condition number for several
values ofN .
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dashed line is the estimate whereas the large dots give exactvalues for several values ofR.
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where0 < ε≪ 1. Clearly both matrices have a large condition number∼ ε−1, while
the product matrixZ := XY has condition number1. Exploiting the fact thatZ is a
product ofX andY yields,

cond(Z) ≤ cond(X)cond(Y) =
1

ε2
, (3.59)

which highly over-estimates the condition number ofZ. Thus decomposing a
matrix and multiplying the condition numbers of the severalfactor matrices does
not nessecarily yield a good approximation of the conditionnumber of the original
matrix.

3.6 Decoupled equations

The decomposition of the BEM-matrixA that we derived in the previous section
has been useful for finding an estimate for the condition number of A. Besides this
estimate the decomposition can also be used to decouple the equations from the BEM
formulation. This allows us to separately retrieve the missing information ofu atΓ2

andq at Γ1. Recall equation (2.37), relating the boundary datab to the unknown
vectorx,

Ax = G̃b. (3.60)

In the previous section we have shown thatA is decomposed as

A = F∗DQU. (3.61)

The matrixG̃ can be decomposed in a smiliar manner. First we writeG̃ as

G̃ = [−H̃P1 | GP2]

= [−F∗ΛHFP1 | F∗ΛGFP2]

= F∗[−ΛHF1 | ΛGF2]

= F∗D[−Λ−1F1 | ΛF2]. (3.62)

Realizing that the vectorb is constructed from the boundary dataũ1 andq̃2, namely
b = [ũ1; q̃2], we can write the right-hand side of (3.60) as

G̃b = F∗D
(
−Λ−1F1ũ1 + ΛF2q̃2

)
=: F∗D f . (3.63)

Using the new expressions forA andG̃b, equation (3.60) becomes

F∗DQUx = F∗Df . (3.64)
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Multiplying by Q∗D−1F yields

Ux = Q∗f , (3.65)

or
[

U1 ∅
∅ U2

] [
q1

u2

]

= [−Q1 | Q2]
∗f =

[
−Q∗

1f

Q∗
2f

]

. (3.66)

So we obtain a set of two linear systems,

U1q1 = −Q∗
1f , (3.67a)

U2u2 = Q∗
2f . (3.67b)

We are given datãu1 on Γ1 andq̃2 on Γ2. Assume that we are interested inu2, i.e.
the unknown coefficients ofu atΓ2. In the original BEM formulation we would then
calculate bothu atΓ2 andq atΓ1. With equation (3.67b) we can directly calculateu
atΓ2 without computingq atΓ1.

Let us summarize which steps we have to take in order to compute u at Γ2.
First we need the Fourier matrixF, whose two componentsF1 andF2 appear in
the vectorf . We also need the diagonal matrixΛ, which contains the eigenvalues
of the matricesG andH̃ (Λ = Λ

1/2
G Λ

−1/2
H ). These eigenvalues are approximated

by the eigenvalues of the single and double-layer potentials. Then we need a QR-
decomposition of the matrix productΛ−1F2, which yields us the matricesQ2 and
U2. Finally we solve the system in (3.67b). Note that the matrixU2 in this system
is an upper triangular matrix, so the system is solved very efficiently by backward
elimination. The most costly step in this procedure is the QR-decomposition of
Λ−1F2. However, note thatΛ−1F2 is aN × (N − m) matrix. With the original
BEM procedure we would have to find a QR-decomposition for aN ×N matrix.

The method described above works similarly if we want to calculate q at Γ1

without computingu at Γ2. Then we need a QR-decomposition forΛF1 and solve
equation (3.67a).

Example 3.1

Consider the following problem on the circleΩ with radiusR,

∇2u = 0, x ∈ Ω,
u = R cos θ, x ∈ Γ1,
q = cos θ, x ∈ Γ2,

(3.68)

which has exact solutionu = R cos θ and q = cos θ at Γ. We chooseR = 2,
m = N − 1, so all elements have Dirichlet boundary conditions, except for the last
element. We calculate the value ofu in this last element, following the procedure
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BEM BEM decoupled

N time(s) rel. error time(s) rel. error

100 0.44 3.93 · 10−4 0.10 3.96 · 10−4

200 1.85 9.95 · 10−4 0.39 9.95 · 10−5

300 4.56 4.44 · 10−5 1.27 4.43 · 10−5

400 9.14 2.51 · 10−5 2.97 2.49 · 10−5

500 15.80 1.61 · 10−5 5.64 1.60 · 10−5

Table 3.5: Calculation time and relative error for both BEM and decoupled BEM. Problem
that is solved is almost purely Dirichlet (m = N − 1).

BEM BEM decoupled

N time (s) time (s)

100 0.43 0.12

200 1.82 0.56

300 4.63 1.86

400 9.13 4.08

500 15.80 7.79

Table 3.6: Calculation time for both BEM and decoupled BEM. Problem that is solved has
mixed boundary conditions (m = N/2).

described above. In Table 3.5 we see that the computation time for findingu with the
decoupled BEM is a factor3 to 4 lower than findingu with the original BEM. At the
same time the accuracy is equally good.

Now let us choosem = N/2 and calculateu at Γ2 andq at Γ1 separately using
the decoupled BEM and compare this to the original BEM. The computation time is
given in Table 3.6. Again we see that the decoupled BEM is faster than the original
BEM. The reason for this is simple: it is more efficient to solve two small systems
than one large system. �

We can improve the efficiency even more, as we do not need to solve the systems
in (3.67) by backward elimination. For this we multiply (3.67a) byQ1,

Q1U1q1 = −Q1Q
∗
1f , (3.69)
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and replace the productQ1U1 by ΛF1,

ΛF1q1 = −Q1Q
∗
1f . (3.70)

We next multiply byF∗
1Λ

−1 to find

q1 = −F∗
1Λ

−1Q1Q
∗
1f . (3.71)

The linear system in (3.67b) can be transformed in a similar manner, and the two
systems in (3.67) are solved with

q1 = −F∗
1Λ

−1Q1Q
∗
1f , (3.72a)

u2 = F∗
2ΛQ2Q

∗
2f . (3.72b)

In this wayq1 andu2 are found without using backward substitution. Nevertheless
the expressions on the right-hand sides involve many matrix-vector multiplications
and may therefore be not very efficient. Moreover we still need to findQ1 andQ2,
i.e. perform QR-decompositions.

For a pure Dirichlet problem, i.e.m = N , we haveQ1 = Q, which is a unitary
matrix. Therefore the matrix productQ1Q

∗
1 in (3.72a) is equal to theN ×N matrix

IN . Also PT
1 = IN and the vectorf is equal tof = −Λ−1Fũ. Hence, for the

Dirichlet problem (3.72a) becomes

q = −F∗Λ−1(−Λ−1Fũ) = F∗Λ−2Fũ = F∗Λ−1
G ΛHFũ. (3.73)

All matrices in this expression are known or can be approximated accurately. Thus
we obtainq by performing a simple matrix-vector product. In a similar manner we
find u from boundary datãq with

u = F∗ΛGΛ−1
H Fq̃. (3.74)



Chapter 4

Logarithmic capacity

In this chapter we investigate the uniqueness of the solution of the boundary integral
equation (BIE) for the Laplace equation on a general two-dimensional domain.
Three different types of boundary conditions are distinguished: Dirichlet, mixed
and Neumann boundary conditions. For a Laplace equation with Dirichlet boundary
conditions it has been shown that a unique solution does not always exist, depending
on the size of the domain. A similar result is proven for the case of mixed boundary
conditions. The BIE for the Laplace equation with Neumann boundary conditions
does never have a unique solution.

4.1 Introduction

It is well-known that the Laplace equation in differential form with either Dirichlet
or mixed boundary conditions has a unique solution. However, when the Laplace
equation is transformed to a BIE this is not so straightforward anymore. It is noted
that the BIE for the Dirichlet Laplace equation does not always have a unique solution
[53, 56, 75, 85]. Certain domains can be distinguished on which the BIE becomes
singular and a non-trivial solution of the homogeneous equations can be found.
A multiple of this solution can be added to the solution of thenon-homogeneous
equations, which is then no longer unique. For each domain there exists exactly one
rescaled version of this domain for which the BIE becomes singular. This introduces
an extraordinary phenomenon for the BIEs; uniqueness of thesolutions depends on
the scale of the domain.

The domains on which no unique solution can be guaranteed arerelated to the
so-calledlogarithmic capacity. The logarithmic capacity is a real positive number
being a function of the domain. This concept originates fromthe field of measure
theory, but it also appears in potential theory. The conceptof a capacity applied to

47
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a single domain may be a bit confusing, as usually theelectrical capacity is defined
as a charge difference between two conducting objects. The logarithmic capacity
however is related to a single domain.

In potential theory it is shown that when the logarithmic capacity of a domain
is equal to one, then the homogeneous BIE for the Dirichlet Laplace equation at the
boundary of that domain has a non-trivial solution [52, 66, 91]. This allows us to
a-priori detect whether a BIE will become singular on a certain domain. Namely,
we have to compute the logarithmic capacity and verify whether it is equal to one.
Additionally, the logarithmic capacity also enables us to modify the BIE such that it
does not become singular. We can scale the domain in such a waythat the logarithmic
capacity does not become equal to one. The BIE on the corresponding boundary will
then be nonsingular.

The BIE for the Laplace equation with mixed boundary conditions did not receive
much attention until now [39]. However, a similar phenomenon as for the Dirichlet
case takes place for mixed conditions. For each domain thereexists exactly one
rescaled version of this domain for which the BIE becomes singular. This result is
proven in Section 4.4.

Research has been done on the BIE for the biharmonic equation. It is shown that
the BIE for the biharmonic equation with Dirichlet conditions on a circle does not
admit a unique solution when the radius of the circle is equalto 1 or e−1 [23]. A few
years later it was shown that a more general result is true: for any 2D domain there
exists two critical scalings for which the BIE does not have aunique solution [44].
For the BIE for the biharmonic equation, the number of critical scaling can even
increase to three or four for domains that consist of two or four separate squares [30].
Apart from rescaling the domain there are two options to guarantee nonsingular BIEs
and a unique solution. The first option is to add two supplementary conditions [23],
while the second option involves modified fundamental solutions for the biharmonic
equation [28].

Another class of BIEs for which uniqueness properties has been investigated is
the class of BIEs for the Helmholtz equation. It is derived that there is a countable
set of critical wave numbers for which the condition number of both the integral
operator as the related discrete operator becomes infinitely large [2, 59, 60, 61]. By
introducing a coupling parameter between the various boundary integral operators
it is shown that the condition numbers can be minimized. The singular BIE for
the Helmholtz equation is different from the singular BIEs for the Laplace and
biharmonic equation. The singularity appears at certain wave numbers, and not
at certain critical scalings. Moreover singular BIEs also appear for the Helmholtz
equation in 3D. This is not the case for the BIEs for the Laplace and biharmonic
equation.

In this chapter we investigate both the BIE for the Laplace equation with Dirichlet
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conditions and mixed conditions, and we also include the BIEfor the Laplace
equation with Neumann conditions. Thus we study three different problems. First
we describe the setting of these three problems.

Let Ω be a simply connected domain in 2D whose boundaryΓ is a closed curve.
In the interior ofΩ the Laplace equation holds for the unknown functionu = u(x),

∇2u = 0, x ∈ Ω. (4.1)

Recall that thefundamental solutionG of the Laplace operator∇2 is given by

G(x,y) :=
1

2π
log

1

‖x− y‖ . (4.2)

We denote byq the derivative ofu with respect to the outward normaln at Γ.
Introduce thesingle and double layer potentialby

(Ksq)(x) :=

∫

Γ
G(x,y)q(y)dΓy, x ∈ Γ,

(Kdu)(x) :=

∫

Γ

∂

∂ny
{G(x,y)}u(y)dΓy, x ∈ Γ, (4.3)

respectively. The BIE for the Laplace equation deduced in Chapter 2 reads (cf. [6])

1

2
u+ Kdu = Ksq, x ∈ Γ. (4.4)

At each point on the boundary we prescribe eitheru or q. We distinguish three types
of boundary conditions.
Dirichlet problem

u = ũ, x ∈ Γ. (4.5)

Mixed problem

u = ũ, x ∈ Γ1,

q = q̃, x ∈ Γ2, (4.6)

Neumann problem

q = q̃, x ∈ Γ. (4.7)

whereΓ1 ∪ Γ2 = Γ andΓ1 ∩ Γ2 = ∅.
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4.2 Logarithmic capacity

To study the uniqueness properties of the Dirichlet and the mixed problem in the next
section we need to introduce the notion oflogarithmic capacity. We define the energy
integralI by

I(q) :=

∫

Γ

∫

Γ
log

1

‖x− y‖q(x)q(y)dΓxdΓy (4.8)

and the logarithmic capacityCl(Γ) is related to this integral by

− logCl(Γ) := inf
q
I(q). (4.9)

Here the infimum is taken over all functionsq with the restriction that
∫

Γ
q(x)dΓx = 1. (4.10)

Let us give a physical interpretation of the logarithmic capacity. For simplicity
let the domainΩ be contained in the disc with radius1/2. In that case it can be shown
that the integralI(q) is positive. The functionq can be seen as a charge distribution
over a conducting domainΩ. Faraday demonstrated that this charge will only reside
at the exterior boundary of the domain, in our case atΓ. We normalizeq in such a
way that the total amount of charge atΓ is equal to one, cf. condition (4.10). The
functionKsq is identified as the potential due to the charge distributionq. Note that
the integralI can also be written as

I(q) = 2π

∫

Γ
(Ksq)(x)q(x)dΓx. (4.11)

HenceI can be seen as the energy of the charge distributionq. The charge will
distribute itself overΓ in such a way that the energyI is minimized. So the quantity
− logCl(Γ) is the minimal amount of energy. Hence the logarithmic capacity Cl(Γ)
is a measure for the capability of the boundaryΓ to support a unit amount of charge.

For most boundaries the logarithmic capacity is not known explicitly. Only for a
few elementary domains the logarithmic capacity can be calculated analytically [66];
we have listed some in Table 4.1.

There are also some useful properties [5, 52] that help us to determine or estimate
the logarithmic capacity.

1. If Γ is the outer boundary of a closed bounded domainΩ, thenCl(Γ) = Cl(Ω).
This agrees with the idea of Faraday’s cage, mentioned above.

2. Denote bydΓ the Euclidean diameter ofΩ, thenCl(Γ) ≤ dΓ. Hence the
radius of the smallest circle in whichΓ is contained is an upper bound for the
logarithmic capacity ofΓ.
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boundaryΓ logarithmic capacityCl(Γ)

circle with radiusR R

square with sideL
Γ( 1

4
)2

4π3/2 L ≈ 0.59017 · L
ellipse with semi-axesa andb (a+ b)/2

interval of lengtha 1
4a

isosceles right triangle sidel 33/4Γ(1/4)2

27/2π3/2 l ≈ 0.476 l

Table 4.1: The logarithmic capacity of some domains. Note thatΓ(·) represents the gamma-
function.

3. If Γ = x + αΓ1, thenCl(Γ) = αCl(Γ1). Hence the logarithmic capacity
behaves linearly with respect to scaling and is invariant with respect to
translation.

4. If Ω1 ⊂ Ω2, thenCl(Ω1) ≤ Cl(Ω2).

5. For a convex domainΩ,

Cl(Ω) ≥
(

area(Ω)

π

)1/2

. (4.12)

If the properties from the list above do not supply accurate enough estimates, the
logarithmic capacity can also be approximated numericallywith the help of linear
programming [82].

4.3 Dirichlet problem

For the BIE that arises from the Laplace equation with Dirichlet boundary conditions
we have the following result.

Theorem 4.1 There exists a nonzeroqe such that

(Ksqe)(x) = − 1

2π
logCl(Γ), x ∈ Γ. (4.13)

Sketch of proof. In the following we briefly present the major steps in the proof of
the theorem [52, 70, 98]. We observe that for the values of theenergy integral (4.8)
we have−∞ < I(q) ≤ ∞. If the infimum of the energy integral is infinitely large,
then by definition the logarithmic capacity is equal to zero.
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Suppose thatCl(Γ) > 0 and thus−∞ < I(q) <∞. It is proven [52, p. 282] that for
each boundaryΓ there exists a unique minimizerqe of I(q), i.e.

I(qe) = inf
q
I(q) = − logCl(Γ) with

∫

Γ
qe(x)dΓx = 1. (4.14)

For the minimizerqe the following result is proven [52, p. 287]. LetΓ be a closed
bounded domain with positive logarithmic capacity and a connected complement.
Then2πKsqe ≤ − logCl(Γ) in the whole plane and2πKsqe = − logCl(Γ) at Γ,
except possibly for a subset which has zero logarithmic capacity. �

Theorem 4.1 leads to the following result.

Corollary 4.2 If Cl(Γ) = 1 there exists a nonzeroqe such thatKsqe = 0.

Thus in the specific case thatCl(Γ) = 1 the single layer operatorKs admits an
eigenfunctionqe with zero eigenvalue. HenceKs is not positive definite and the
Dirichlet problem does not have a unique solution.

If we rescale the domain such that the Euclidean diameter is smaller than one,
then the second property in Section 4.2 shows us that the logarithmic capacity will
also be smaller than one. In this way we can guarantee the existence of a unique
solution of the BIE.

Recall that the non-trivial solutionqe of the homogeneous BIEKsq = 0 has a
contour integral equal to1. At the same time we realize that a solutionq of Ksq = 0
has to satisfy

∫

Γ
qdΓ =

∫

Ω
∆udΩ = 0, (4.15)

where we make use of Gauss’ theorem. By adding this requirement for q to the BIE,
we exclude the possibility thatqe is a solution of the homogeneous BIE. This provides
a second strategy to ensure unique solutions of the BIE.

A third option to guarantee a unique solution is to adjust theintegral operatorKs.
Note that the functionGα,

Gα(x,y) :=
1

2π
log

α

‖x− y‖ , α ∈ R
+, (4.16)

is also a fundamental solution for the Laplace operator. Thecorresponding single
layer potential reads

Ks
αq :=

1

2π

∫

Γ
log

α

‖x− y‖q(y)dΓy = Ksq +
log α

2π

∫

Γ
qdΓ. (4.17)
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For the minimizerqe we get

Ks
αqe = Ksqe +

logα

2π

∫

Γ
qedΓ = − 1

2π
logCl(Γ) +

1

2π
logα

=
1

2π
log

α

Cl(Γ)
. (4.18)

This is only equal to zero ifα = Cl(Γ). We may chooseα any positive real number
unequal toCl(Γ) and obtainKs

αqe 6= 0. In that caseqe is no longer an eigenfunction
of the single layer potential operator with zero eigenvalue. Hence the BIE (4.4) with
Dirichlet conditions is uniquely solvable ifKs is replaced byKs

α [26, 70]. The
advantage of this procedure is that we do not need a rescalingof the domain, nor
do we have to add an extra equation. Furthermore, we do not need to know the
logarithmic capacity explicitly; a rough estimate of the capacity sufficies to chooseα
such thatα 6= Cl(Γ).

There are also ways to ensure a unique solution of the BIE for the Laplace
equation tha can be used without having to know the logarithmic capacity. For
instance, adding an extra collocation node at the interior or exterior of the domain
can change the BIE in such a way that it is not singular any longer [17]. This does
depend on the location of the extra collocation node though.Another option is to use
the hypersingular formulation of the BIE [18]. The hypersingular BIE is the normal
derivative of the standard BIE and does not involve the single layer operator. As a
consequence the BIE does not become singular at certain domains.

4.4 Mixed problem

To investigate the Laplace equation with mixed boundary conditions we have to
rewrite the BIE in (4.4). Fori = 1, 2 we introduce the functionsui := u|Γi and
qi := q|Γi and the boundary integral operators

(Ks
i q)(x) :=

∫

Γi

G(x,y)q(y)dΓy, x ∈ Γ, (4.19a)

(Kd
i u)(x) :=

∫

Γi

∂

∂ny
G(x,y)u(y)dΓy, x ∈ Γ. (4.19b)

Note that the boundary conditions (4.6) provideu1 = ũ and q2 = q̃. By
distinguishingx ∈ Γ1 andx ∈ Γ2, we write (4.4) as a system of two BIEs,

Kd
2u2 −Ks

1q1 = Ks
2q̃ −

1

2
ũ−Kd

1ũ, x ∈ Γ1, (4.20a)

1

2
u2 + Kd

2u2 −Ks
1q1 = Ks

2q̃ −Kd
1ũ, x ∈ Γ2. (4.20b)
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In this system all prescribed boundary data are at the right-hand side of the equations.

Theorem 4.3 If Cl(Γ) = 1, the homogeneous equations of (4.20a) and (4.20b) have
a non-trivial solution pair(q1, u2).

Proof. We have to find a non-trivial pair of functions(q1, u2) such that the left-
hand sides of (4.20a) and (4.20b) are equal to zero whenCl(Γ) = 1. To this end we
chooseu2 ≡ 0 andq1 = qe|Γ1

+ h1, with the functionh1 satisfying

Ks
1h1 = Ks

2qe, x ∈ Γ. (4.21)

With these choices both the left-hand sides of (4.20a) and (4.20b) are equal to

−Ks
1q1 = −(Ks

1qe + Ks
1h1) = −(Ks

1qe + Ks
2qe) = −Ksqe

=
1

2π
logCl(Γ) = 0. (4.22)

We still have to prove that it is possible to find a functionh1 that satisfies (4.21). First
we note that the right-hand side of (4.21) is in〈qe〉⊥, since

(Ks
2qe, qe)Γ =

∫

Γ

∫

Γ2

G(x,y)qe(y)dΓyqe(x)dΓx

=

∫

Γ2

∫

Γ
G(x,y)qe(x)dΓxqe(y)dΓy

= (Ksqe, qe)Γ2
= − 1

2π
logCl(Γ)(1, qe)Γ2

= 0. (4.23)

Here(·, ·)Γ stands for the inner product over the boundaryΓ. As the right-hand side
of (4.21) is in〈qe〉⊥, we can generalize the question: is it possible to find a function
h1 such thatKs

1h1 = φ for all φ ∈ 〈qe〉⊥? If so, thenφ = Ks
2qe completes the proof.

For all functionsq ∈ 〈qe〉⊥ with q 6= 0 we haveI(q) > I(qe), sinceqe is the
unique minimizer ofI. UsingI(q) = 2π(Ksq, q) we find that

(Ksq, q) >
1

2π
I(qe) = − 1

2π
logCl(Γ) = 0, q ∈ 〈qe〉⊥, q 6= 0. (4.24)

SoKs is positive definite and invertible on the function space〈qe〉⊥. This means that
for all φ ∈< qe >

⊥ there is a functionh with Ksh = φ. Let h be the solution of
Ksh = φ, then it can be decomposed as

h =

{
h1, x ∈ Γ1,
h2, x ∈ Γ2.

(4.25)

Recall that we search for a functionh1 such thatKs
1h1 = φ, for φ ∈ 〈qe〉⊥. We add

the functionKs
2h2 to this equation,

Ks
1h1 + Ks

2h2 = φ+ Ks
2h2, (4.26)
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which is equivalent to

Ksh = φ+ Ks
2h2. (4.27)

The right-hand side of this equation is in〈qe〉⊥, sinceφ ∈ 〈qe〉⊥ and

(Ks
2h2, qe)Γ =

∫

Γ

∫

Γ2

G(x,y)h2(y)dΓyqe(x)dΓx

=

∫

Γ2

∫

Γ
G(x,y)qe(x)dΓxh2(y)dΓy

= (Ksqe, h2)Γ2
= − 1

2π
logCl(Γ)(1, h2)Γ2

= 0. (4.28)

SinceKs is invertible on the function space〈qe〉⊥, and the right-hand side of (4.27)
is in 〈qe〉⊥, there exists a solutionh of (4.27). The functionh1 is then the restriction
of h to Γ1 �

Theorem 4.3 tells us that the BIE for the mixed problem does not have a unique
solution whenCl(Γ) = 1, i.e. the BIE is singular. Moreover the division ofΓ into
a partΓ1 with Dirichlet conditions and a partΓ2 with Neumann conditions does not
play a role in this. It does not make a difference whether we take Γ1 very small or
very large; the singular BIE relates solely to the whole boundaryΓ.

To guarantee a unique solution for the mixed problem we have the same options
as for the Dirichlet problem. The simplest remedy is to rescale the domain, thus
avoiding a unit logarithmic capacity. A second option is to demand that the function
q has a zero contour integral. Since part ofq is already prescribed this yields the
following condition for the unknown part ofq,

∫

Γ1

q1dΓ = −
∫

Γ2

q̃dΓ. (4.29)

As a last option to obtain nonsingular BIEs, we can also replace the single layer
operatorKs by Ks

α, see Section 4.3.

4.5 Neumann problem

It is well known that the classic Neumann boundary value problem for the Laplace
equation does not have a unique solution. Hence the corresponding BIE will also not
have a unique solution. For completeness we prove the following theorem for the
BIE (4.4) with Neumann boundary conditions in which it is shown that the Neumann
problem has a solution which is unique up to a constant [25, p.37].
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Figure 4.1: The pointx ∈ Γ is the center of a small circleBε with radiusε.

Theorem 4.4 For any closed curveΓ

(1

2
I + Kd

)
1 = 0. (4.30)

Proof. To show that operator12I + Kd applied to the constant function1 yields
zero, we need to prove thatKd1 ≡ −1

2 at the boundary. Letx be a point at the
boundaryΓ, then using Gauss’ theorem we find

(
Kd1

)
(x) =

∫

Γ

∂

∂ny
G(x,y)dΓy =

∫

Ω
∇2

yG(x,y)dΩy, (4.31)

where the subscripty means integration or differentiation with respect toy. The
fundamental solution is defined such that∇2

yG(x,y) = −δ(x − y). Hence, when
integrating overy, we have to take special care at the pointy = x. LetBε be a small
circle with radiusε around the pointx and letB′

ε be the part of that circle that lies
insideΩ, i.e.B′

ε = Bε ∩Ω, see Figure 4.1. The domain integral in (4.31) can be split
in

(
Kd1

)
(x) =

∫

Ω/B′

ε

∇2
yG(x,y)dΩy +

∫

B′

ε

∇2
yG(x,y)dΩy. (4.32)

Within the domainΩ/B′
ε the fundamental solution does not have a singular point

and thus∇2
yG(x,y) = 0 in this domain. As a consequence the first integral at the

right-hand side of (4.32) is equal to zero. If the boundaryΓ is smooth enough, the
circleB′

ε is half the size of the circleBε. Likewise, ifε goes to zero, the integral over
B′

ε in (4.32) is half the size of the same integral overBε. Hence we obtain

(
Kd1

)
(x) =

1

2

∫

Bε

∇2
yG(x,y)dΩy. (4.33)
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We use Gauss’ theorem to transform the domain integral overBε to a boundary
integral overΓε, the boundary of the circleBε,

(
Kd1

)
(x) =

1

2

∫

Γε

∂

∂ny
G(x,y)dΓy. (4.34)

We introduce polar coordinates(r, θ) at the circleBε, the point x being the
local origin. Recall the definition of the fundamental solution (4.2) in which now
‖x− y‖ ≡ r for y ∈ Bε. It is straightforward to see that

∂

∂ny
G(x,y) =

1

2π

∂

∂r
log

1

r
= − 1

2π

1

r
. (4.35)

Substituting this in the integral of (4.34) results in

(
Kd1

)
(x) = −1

2

∫ 2π

0

1

2π

1

r
rdθ = −1

2
. (4.36)

The direct consequence of this is that

(1

2
I + Kd

)
1 = 0, (4.37)

with which Theorem 4.4 has been proven. �

4.6 Examples

In this section we illustrate the results from the previous sections. We do this by
calculating the condition number of the matrices that appear in the BEM. After
discretisation of the boundary, the BIE transforms into a linear system of equations.
If the BIE is singular, we may expect that the linear system is(almost) singular. As a
consequence the condition number of the corresponding system matrix is very large.

For the BIE related to the Laplace equation with Dirichlet boundary equations we
obtain the following linear system

Gq = f , (4.38)

wheref := f(ũ). We compute the condition number ofG for two cases: a circular
domain with radiusR and a square domain with sideL. In both cases we choose
N = 36 boundary elements.
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Figure 4.2: The condition number ofG for the Laplace equation with Dirichlet boundary
conditions.

Example 4.1

For the circular domain the logarithmic capacity is equal tothe radius of the circle,
see Table 4.1. Thus if the radiusR is equal to one also the logarithmic capacity is
equal to one. In that case the BIE does not have a unique solution and the condition
number of the matrixG will be very large. In Figure 4.2(a) we show the condition
number ofG as a function of the radiusR. We observe that indeed the condition
number goes to infinity whenR approachesR∗ := 1, cf. [19], [20]. Note that these
obervations area-posterioriobservations; first the matrixG is constructed and then
its condition number is computed. It is also possible toa-priori estimate the condition
number for the Dirichlet problem on a circle [37, 38]. �

Example 4.2

For the square domain the logarithmic capacity is approximately 0.59L, see
Table 4.1. Hence if the side lengthL is approximately equal toL∗ := 1/0.59 ≈ 1.69,
then the logarithmic capacity is equal to one. Analogous to the case of the circle the
condition number of the matrixG is very large in that case. In Figure 4.2(b) the
condition number ofG is plotted as a function ofL. We observe that it grows to
infinity whenL approaches1.69. �

The scaling parametersR∗ andL∗ are calledcritical (or degenerate) scalings.
Throughout this thesis we will adopt the term critical scaling. The corresponding
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Figure 4.3: The smallest singular value of the matricesG (circles) andG1 (diamonds) for
the Laplace problem with mixed boundary conditions on an ellipsoidal domain.

domain is referred to as thecritical domain. A description for the boundary of a
critical domain which frequently appears in literature isΓ-contour[56].

It is obvious that we cannot use the boundary element formulation if the
logarithmic capacity is equal to one. In Section 4.3 we suggested to search for
solutionsq of the Dirichlet BIE that also satisfy the requirement (4.15), i.e. have
contour integral equal to zero. Translating this requirement to the discrete problem,
we have to search for solutionsq that also satisfyq1 + . . .+ qN = 0. Hence we have
to solve the rectangular system








G

H . . . H








︸ ︷︷ ︸

G1






q1
...
qN




 =








f1
...
fN

0







. (4.39)

Here the additional condition is multiplied by a non-zero scalarH in order to obtain a
well-balanced matrixG1. As we have a rectangular system, we require other solution
techniques to solve the system, compared to the original system.

Example 4.3

To investigate the conditioning of the new system in (4.39),we compare the smallest
singular values ofG andG1. We illustrate this for an ellipsoidal domain with axis
a anda/2. In Table 4.1 it is given that the logarithmic capacity of such an ellipse
is equal to3a/4. Hence if we choosea equal to the critical valuea∗ = 4/3
the logarithmic capacity is equal to one. In Figure 4.3 bothσmin(G) (circles)
and σmin(G1) (diamonds) are plotted as a function of the scaling parameter a.



60 Chapter 4 Logarithmic capacity

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

a

co
n

d
. 

n
r.

 

 

cond(G)
cond(Gα)

Figure 4.4: The condition number ofG (circles) andGα (diamonds) for a circular domain
with radiusa. Hereα = 2.

We observe that fora = a∗, σmin(G) is going to zero, whileσmin(G1) remains
O

(
10−2

)
. Hence the system withG is singular ata = a∗, while the system withG1

is nonsingular. �

As explained in Section 4.3, a nonsingular BIE can also be obtained by replacing
the integral operatorKs byKs

α. This affects the matrixG in the algebraic equations;
the elements of thej-th column ofG is augmented with a factor|Γj| log α/(2π),
where|Γj | is the length of thej-th boundary element. We denote this new matrix
by Gα.

Example 4.4

In Figure 4.4 we show the condition number ofG (circles) andGα (diamonds) for a
circular domain with radiusa. In this case we chooseα = 2. The condition number
of the matrixG goes to infinity asa approaches one, i.e. the unit circle. The condition
number ofGα remains bounded. �

After discretisation of the boundary the BIE for the Laplaceequation with mixed
boundary conditions transforms in the linear system

Gq =

(
1

2
I + H

)

u. (4.40)

We assume that on the first part of the boundaryΓ, represented by the first
m (0 ≤ m ≤ N ) elements, Dirichlet boundary conditions are given. On the
remainingN − m elements we have Neumann boundary conditions. This implies
that the firstm coefficients ofu and the lastN −m coefficients ofq are given. By
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Figure 4.5: The condition number of the matricesA (circles) and G (squares)
corresponding to the Laplace equation with mixed boundary conditions and Dirichlet
boundary conditions respectively.

moving all unknown coefficients to the left-hand side and allknown coefficients to
the right-hand side in (4.40) we arrive at the standard form linear system

Ax = b. (4.41)

If the BIE is not uniquely solvable, then the linear system issingular, and the
condition number of the matrixA is very large. We illustrate this with two examples:
a triangular domain and an ellipsoidal domain.

Example 4.5

The triangle is an isosceles right triangle with sides of length l. For such a triangle
the logarithmic capacity is given by

Cl(triangle) =
33/4Γ2(1/4)

27/2π3/2
l ≈ 0.476 l. (4.42)

This implies that the condition number will be large when thescaling parameterl is
close to the critical scalingl∗ := 1/0.476 ≈ 2.1. The ellipse has semi-axes of length
a anda/2, which has logarithmic capacity equal to3a/4. Hence we may expect a
large condition number when the scaling parametera is close toa∗ := 4/3.

In Figure 4.5 we show the condition numbers for the matricesA andG. We
chooseN = 32 and m = N/2, i.e. the number of elements with Dirichlet
conditions is equal to the number of elements with Neumann conditions. The circles
represent the condition number for the mixed problem, whilethe squares represent
the condition number for the Dirichlet problem. We observe that the the critical
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Figure 4.6: The critical scaling parametera∗ for which the condition number ofA goes to
infinity.

scaling parameter is (almost) the same for both matricesA and G. The small
difference that is present is caused by numerical inaccuracies due to the discretisation.
Hence it does not matter whether we solve a Dirichlet problemor a mixed problem;
for both problems there exists the same critical scaling of the domain such that the
problems are not uniquely solvable. As was predicted for thetriangle, the point where
the condition number is very large is close tol ≈ 2.1. For the ellipse we observe that
indeed the point where the condition number is large is ata ≈ 1.3. �

Example 4.6

Figure 4.6 gives more details about the critical scaling forwhich the condition
number goes to infinity. Again we consider an ellipsoidal domain with semi-axes
of lengtha anda/2, having a critical scalinga∗ = 4/3. This, of course, holds for
a perfect ellipse. In reality we work with an approximation of an ellipse, namely a
polygon withN sides. IfN is large, the ellipse is approximated very well, and we
expect to find a scaling parametera∗ that is close to that of the ellipse, i.e.a∗ = 4/3.
In Figure 4.6(a) we see the accuracy ina∗ as a function ofN . We observe that for
largeN the error between theoretical value and actual value gets very small.

In Section 4.4 it was already mentioned that the division of the boundaryΓ into a
Dirichlet and a Neumann part does not play a role in the singularity of the BIE. Figure
4.6(b) illustrates this. Here we varym, the number of elements that have Dirichlet
boundary conditions. The total number of elements isN = 32. Hencem = 32
corresponds to the Dirichlet problem, whilem = 1 is a problem with Neumann
conditions, except for one element. For each value ofm we compute the critical
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scalinga∗. We see that there is little change in the value ofa∗ asm varies between1
andN . �

As the mixed problem is ill-posed when the logarithmic capacity is equal to one,
we may add an extra condition like we did for the Dirichlet problem. Sinceu satisfies
the Laplace equation on the interior of the domain we know that q must have a zero
contour integral. This leads to the following condition forthe solution vectorq of the
linear system in (4.40),

q1 + . . .+ qm = −γ := −(q̃m+1 + . . . + q̃N), (4.43)

since part of the vectorq is already prescribed by the boundary condition atΓ2. Like
we did for the Dirichlet case we formulate a new linear systemin which the extra
condition is incorporated,








A

H . . .H 0 . . . 0








︸ ︷︷ ︸

A1






x1
...
xN




 =








b1
...
bN

−Hγ







. (4.44)

Here the additional condition is multiplied by a non-zero scalarH to obtain a well-
balanced system matrix.

Example 4.7

We compare the smallest singular valueσmin(A) of the original matrixA to the
smallest singular valueσmin(A1) of the new matrixA1 for the example of the ellipse
with semi-axesa anda/2. In Figure 4.7 we give the smallest singular values of the
matricesA (circles) andA1 (diamonds) as a function of the scaling parametera.
We observe that for the scalinga = a∗, σmin(A) drops to zero, whileσmin(A1)
remainsO

(
10−2

)
. Hence the system withA is singular ata = a∗ while the system

with A1 is nonsingular. �

Another procedure to obtain a nonsingular BIE is to replace the integral operator
Ks by Ks

α, see Section 4.4. This affects the matrixG as described before, and asA

inherits a block fromG, alsoA is affected. We denote the new matrix byAα.

Example 4.8

In Figure 4.8 we show the condition number ofA (circles) andAα (diamonds) for
a circular domain with radiusR. In this case we choose the parameterα equal to
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Figure 4.7: The condition number of the matricesA (circles) andA1 (diamonds) for the
Laplace problem with mixed boundary conditions on an ellipsoidal domain.
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Figure 4.8: The condition number ofA (circles) andAα (diamonds) for a circular domain
with radiusR. Hereα = 2.

two. As we have seen before, the condition number of the matrix A goes to infinity
atR = R∗ := 1. The condition number ofAα remains bounded. �

Another technique to ensure low condition numbers is by balancing the matrix
elements ofG andH with a suitable scaling parameter of the domain [72].



Chapter 5

Two-dimensional Stokes flow

It was observed in Chapter 3 and 4 that the boundary integral equation (BIE) for the
Laplace equation may become singular at certain critical two-dimensional domains.
The main cause for this lies in the logarithmic kernel that appears in the boundary
integral operator. In the boundary integral operator for the Stokes equations on a two-
dimensional domain the logarithmic kernel also appears. Therefore we may expect
singular BIEs for the Stokes equations too. This is therefore the topic of this chapter.

The Stokes equations describe the flow of a viscous fluid. We briefly introduce
the Stokes equations in differential form and the corresponding boundary integral
formulation in dimensionless notation. For more details werefer to Chapter 6, in
which the equations are derived in a three-dimensional setting. For the boundary
conditions we either choose Dirichlet or mixed boundary conditions. We will show
that for both cases there are critical sizes of the fluid domain for which the Stokes
equations in boundary integral form are singular.

This chapter is an elaboration of earlier work of the author et al. [35] concerning
condition numbers of BEM-matrices that appear for the 2D Stokes equations.

5.1 Boundary integral equations for 2D Stokes flow

The Laplace equation and the Stokes equations have at least one thing in common: the
Laplace operator appears in both equations. As we have seen in previous chapters,
the Laplace equation may lead to a singular BIE for certain critical domains. The
question arises whether this is also the case for the Stokes equations: can the
corresponding BIEs become singular on certain critical domains?

In this chapter we study the BIEs following from the Stokes equations. In
particular we focus on the eigenvalues of the integral operators. It is shown that
for certain critical domains these integral operators admit zero eigenvalues. Hence,

65
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again we find that the BIEs become singular for a number of critical domains.
For the Laplace equation it is possible toa-priori determine the critical domains.

For a number of simple domains, the logarithmic capacity canbe used to exactly
compute the critical size. For more involved domains the logarithmic capacity can be
used to estimate the critical size of the domain. Unfortunately the critical domains
for the Stokes equations do not coincide with the critical domains for the Laplace
equations. Hence we cannot use the logarithmic capacity toa-priori determine the
critical domains on which the BIEs for Stokes equations become singular. It is only
by numerical experiments that we can distinguish the critical domains.

Let Ω be a two-dimensional simply-connected domainΩ with a smooth
boundaryΓ. The Stokes equations for a viscous flow inΩ read

∇2v −∇p = 0,

∇.v = 0, (5.1)

wherev is the velocity field of the fluid andp its pressure. LetΓ be divided into a
partΓ1 on which the velocityv is prescribed, and a partΓ2 on which the pressurep
is prescribed,Γ = Γ1

⋃
Γ2. Hence the Stokes equations are subject to the boundary

conditions

v = ṽ, x ∈ Γ1,

p = p̃, x ∈ Γ2. (5.2)

Either Γ1 or Γ2 can be empty, leading to a purely Neumann or Dirichlet problem
respectively. The Stokes equations in differential form can be transformed to a set of
two BIEs [65, 75, 76]

1

2
vi(x) +

∫

Γ
qij(x,y)vj(y)dΓy

=

∫

Γ
uij(x,y)bj(y)dΓy, x ∈ Γ, i = 1, 2. (5.3)

Here a repeated index means summation over all possible values of that index. The
vector functionb is the normal stress at the fluid boundary,

b := σ(p,v)n, (5.4)

with n the outward unit normal at the boundary and the stress tensorσ defined by

σij(p,v) := −pδij +
( ∂vi

∂xj
+
∂vj

∂xi

)

. (5.5)

Hence the boundary integral formulation involves two variables, the velocityv and
the normal stressb. In correspondence to (5.2), at each point of the boundary either
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v or b is prescribed,

v = ṽ, x ∈ Γ1,
b = −p̃n, x ∈ Γ2.

(5.6)

The kernelsuij andqij in the integral equations are defined as

qij(x,y) :=
1

π

(xi − yi)(xj − yj)(xk − yk)nk

‖x− y‖4
,

uij(x,y) :=
1

4π

{

δij log
1

‖x− y‖ +
(xi − yi)(xj − yj)

‖x− y‖2

}

, (5.7)

for i, j = 1, 2. We introduce boundary integral operators,

(Gϕ)i(x) :=

∫

Γ
uij(x,y)ϕj(y)dΓy,

(Hψ)i(x) :=

∫

Γ
qij(x,y)ψj(y)dΓy, (5.8)

which enables us to write (5.3) as

(
1

2
I + H)v = Gb. (5.9)

The operatorsG andH are called thesingle and double layer operatorfor the Stokes
equations. For the Dirichlet problem the velocityv at the boundary is given (Γ2 = ∅)
and we would like to reconstruct the normal stressb at the boundary. To this end we
need to invert the operatorG. This can only be done when all eigenvalues ofG are
unequal to zero. In this chapter we investigate under which conditionsG admits a
zero eigenvalue.

For the mixed problem the velocity atΓ1 is prescribed and the normal stress at
Γ2 is prescribed. We would like to reconstruct the unknown velocity at Γ2 and the
unknown normal stress atΓ1. After rearranging known and unknown terms (see
Section 5.4) we again need to invert a boundary integral operator. This can only be
done when all eigenvalues of the operator are unequal to zero. We will show that zero
eigenvalues occur under the same conditions as for the Dirichlet problem.

This chapter does not address the Stokes equations with Neumann conditions. It
is well known that the corresponding BIEs do not have a uniquesolution, due to the
existence of rigid body motions. The Completed Double LayerBEM [75] shows one
way to get around this problem.

5.2 Eigensystem of the single layer operatorG at a circle

For a circular domain it is possible to compute the eigenvalues of the single layer
operatorG analytically. These eigenvalues will show that for a circlewith a particular
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radius the BIE becomes singular. For general domains it is not possible to compute
the eigenvalues ofG analytically. However the BIEs become also singular at certain
domains. This phenomenon for arbitrary domains is presented in the next section.
In the current section we compute eigenfunctions and eigenvalues of the operatorG
for a circular boundaryΓ. Here we make use of the fact that the first term in the
kerneluij is related to the fundamental solution for the Laplace operator in 2D. This
results in the following decomposition of the single layer operatorG for the Stokes
equations,

(Gϕ)i(x) =
1

2
δij(Ksϕj)(x) +

1

4π

∫

Γ

(xi − yi)(xj − yj)

‖x− y‖2
ϕj(y)dΓy. (5.10)

The operatorKs is the single layer operator for the Laplace equation. ForΓ a circle
with radiusR, the single-layer potentialKs admits the following eigensystem [38],

Ks cos(kt) =
R

2k
cos(kt),

Ks sin(kt) =
R

2k
sin(kt),

Ks1 = −R logR, (5.11)

with k ∈ N. We introduce the following polar coordinates,

x := R[cos t, sin t], y := R[cos s, sin s], 0 ≤ t, s < 2π. (5.12)

Then‖x− y‖2 = 2R2(1 − cos(t− s)) and we find

u11(t, s) =
1

8π

{

− log
[
2R2(1 − cos(t− s))

]
+

(cos t− cos s)2

1 − cos(t− s)

}

,

u12(t, s) =
1

8π

(cos t− cos s)(sin t− sin s)

1 − cos(t− s)
,

u21(t, s) =
1

8π

(sin t− sin s)(cos t− cos s)

1 − cos(t− s)
= u12(t, s),

u22(t, s) =
1

8π

{

− log
[
2R2(1 − cos(t− s))

]
+

(sin t− sin s)2

1 − cos(t− s)

}

. (5.13)

Using the integral kernels in polar coordinates given in (5.13) it is straightforward to
compute the eigenvalues and eigenvectors of the operatorG. The results are given in
Table 5.1.

We observe that the functionb(x) = n = [cos t, sin t]T , representing the unit
outward normal, is an eigenfunction with eigenvalue zero. This can be explained as
follows: when we apply a stress in the direction of the normalat each point of the
boundary, each stress having the same magnitude, the net contribution will be equal
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eigenvalue eigenfunctions

0

[
cos t
sin t

]

R
2

[
− sin t

cos t

]

R
4

[
cos t

− sin t

]

,

[
sin t
cos t

]

R
4k , (k = 2, 3, . . .)

[
cos(kt)
sin(kt)

]

,

[
cos(kt)

− sin(kt)

]

,

[
sin(kt)
cos(kt)

]

,

[
− sin(kt)

cos(kt)

]

−1
2R logR+ 1

4R

[
1
0

]

,

[
0
1

]

Table 5.1: Eigenvalues and eigenfunctions of the single layer operator G.

to zero. This phenomenon is not restricted to the circle, butapplies to any shape of
the boundary, as will be proven in Section 5.3. Hence, when solving the BIE (5.9)
with Dirichlet boundary conditions, one has to exclude the normal from the solution
space.

For the caseR = R∗ := exp(1/2), we see that there is another zero eigenvalue,
which has an eigenspace with dimension two. The eigenfunctions correspond to a
uniform stress distribution; at each point of the boundary an equal stress is applied
in the same direction. This particular stress distributionwill cause a translation of
the body. The circular boundary withR = R∗ is called acritical boundaryand the
circle itself acritical domain. The radius or scaleR∗ is called thecritical scaleor
degenerate scale. Equation (5.9) with Dirichlet conditions at the critical boundary
cannot be solved as the operatorG admits a zero eigenvalue. The corresponding BIE
is singular and does not have a unique solution.

The situation in which the BIE is not uniquely solvable for a circle with critical
scale also occurs for the Dirichlet Laplace equation in 2D [19, 20, 22, 24, 38]. It is
shown that the single-layer operator for the unit circle admits a zero eigenvalue, and
consequently it cannot be inverted. Hence, the same phenomenon appears for both
the Laplace and Stokes equations. The critical scale however is not the same for the
Laplace and Stokes equations.
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5.3 Invertibility of single layer operator on general domain

In this section we study the solvability of the BIE (5.9) withDirichlet conditions
on a smooth closed boundaryΓ. We search for eigenfunctionsb of the boundary
integral operatorG with zero eigenvalue, henceGb = 0. If such eigenfunctions exist,
the boundary integral operatorG is not invertible and the integral equation (5.9) is
not uniquely solvable. First we show that at least one such eigenfunction with zero
eigenvalue exists.

Theorem 5.1 For any smooth boundaryΓ the outward unit normaln(x) is an
eigenfunction of the boundary integral operatorG with eigenvalue zero.

Proof. Thei-th component ofGn equals

(Gn)i =

∫

Γ
uij(x,y)nj(y)dΓy

=
1

4π

∫

Γ

[

δij log
1

‖x− y‖ +
(xi − yi)(xj − yj)

‖x− y‖2

]

nj(y)dΓy

=
1

4π

∫

Ω

∂

∂xj

[

δij log
1

‖x− y‖ +
(xi − yi)(xj − yj)

‖x− y‖2

]

dΩy

= −
∫

Ω

∂

∂xj
ui

jdΩy = −
∫

Ω
∇.uidΩ = 0. (5.14)

Here the vectorui is the velocity due to aStokeslet[65], i.e. the velocity field induced
by a point force in theei-direction. This velocity field satisfies the incompressibility
condition∇.ui = 0. �

In Section 5.2 we already saw that for a circular boundary thenormal vectorn
is an eigenfunction ofG with eigenvalue zero. The current theorem generalizes
this result to arbitrary smooth closed boundaries. In the sequel of this section we
assume that the solutions of the Dirichlet problem (5.9) aresought in a function
space that excludes the normal. Hence the eigenfunctionsb of G we are looking for
are perpendicular ton.

We now show that for each boundaryΓ there exist (at most) two critical scalings
of the boundary such that the operatorG in the Dirichlet problem (5.9) is not
invertible. This phenomenon has been observed and proven [41] and we will partly
present the analysis here. In analogy to Section 5.2 the scaling for which the operator
G is not invertible is called acritical scaling, and the corresponding boundary a
critical boundary. The domain that is enclosed by the critical boundary is referred to
as thecritical domain.
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Theorem 5.2 For all given functionsf and constant vectorsd the system of
equations

{
Gb+ c = f ,
∫

Γ bdΓ = d,
(5.15)

has a unique solution pair(b, c), whereb is a function andc a constant vector.

Sketch of proof. The main idea is to show that the operator that maps the pair
(b, c) to the left-hand side of (5.15) is an isomorphism [41]. �

We proceed by introducing the two unit vectorse1 = [1, 0]T ande2 = [0, 1]T .
Theorem 5.2 quarantees that two pairs(b1, c1) and(b2, c2) exist that are the unique
solutions to the two systems

{
Gb1 + c1 = 0,
∫

Γ b
1dΓ = e1,

{
Gb2 + c2 = 0,
∫

Γ b
2dΓ = e2.

(5.16)

We define the matrixCΓ asCΓ := [c1|c2].

Theorem 5.3 If det(CΓ) = 0, then the operatorG is not invertible.

Proof. Suppose thatdet(CΓ) = 0, then the columnsc1 andc2 are dependent, say
c1 = αc2 for someα ∈ R, α 6= 0. In that case

0 =
(
Gb1 + c1

)
− α

(
Gb2 + c2

)

= G(b1 − αb2) + αc2 − αc2

= G(b1 − αb2). (5.17)

The functionb1 − αb2 cannot be equal to zero, since this requires
∫

Γ(b1 − αb2)dΓ
to be equal to zero, while we have

∫

Γ
(b1 − αb2)dΓ = e1 − αe2 6= 0. (5.18)

Sob1−αb2 is an eigenfunction ofG with zero eigenvalue. This eigenfunction cannot
be equal to the normaln, sincen also requires

∫

Γ ndΓ = 0. �

Corollary 5.4 There are (at most) two critical scalings of the domainΓ for which
the operatorG is not invertible.

Proof. We rescale the domainΓ by a factora, i.e. Γ → aΓ. With the definition of
the operatorG it can be shown that

Gb→ Gab := − 1

4π

∫

Γ
a log a bdΓ + aGb. (5.19)
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Then the two systems in (5.16) change into
{
aGbj + cj − 1

4π

∫

Γ a log a bjdΓ = 0,

a
∫

Γ b
jdΓ = ej , j = 1, 2.

(5.20)

Definebj
a := abj for j = 1, 2, then we obtain

{
Gbj

a + cj − 1
4π

∫

Γ log a bj
adΓ = 0,

∫

Γ b
j
adΓ = ej , j = 1, 2.

(5.21)

Substituting the second equation into the first equation, weget
{

Gbj
a + cj − 1

4π log a ej = 0,
∫

Γ b
j
adΓ = ej, j = 1, 2.

(5.22)

These systems have the same form as the original systems in (5.16), except for the
changecj → cj − 1

4π log a ej for j = 1, 2. Define the new matrixCaΓ by

CaΓ := CΓ − 1

4π
log a I2, (5.23)

thenGa is not invertible whendet(CaΓ) = 0. Hence, when1
4π log a is an eigenvalue

of CΓ, the operatorGa is not invertible. This implies that, whenCΓ has two distinct
eigenvalues, there are two critical scalingsa for whichGa is not invertible. IfCΓ has
one eigenvalue with double multiplicity these critical scalings coincide. �

The result of Corollary 5.4 shows that the BIEs for the Dirichlet Stokes equations
become singular for certain sizes of the domain. As a consequence, the equations
are not uniquely solvable. This solvability problem is an artifact of the boundary
integral formulation; the Stokes equations in differential form always have a unique
solution. In Chapter 3 and 4, and in literature [53, 56, 75, 85], a similar phenomenon
is observed for the Laplace equation with Dirichlet conditions; in its differential form
the problem is well-posed, while the corresponding BIE is not solvable at critical
boundaries.

For the Laplace equation the critical scaling is related to the logarithmic capacity
of the domain. By calculating or estimating the logarithmiccapacity one can
determine or estimate the critical domains, without computing BEM matrices and
evaluating their condition numbers. It is thisa-priori information that allows us to
modify the standard BEM formulation such that the BIE becomeuniquely solvable
(see Section 5.3).

For the Stokes equations, there does not exist an equivalentto the logarithmic
capacity. Hence we cannota-priori determine the critical domains. One way to
determine the critical domains is by computing the BEM-matrices and evaluating
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their condition numbers. If the condition number jumps to infinity for a certain
domain, then this domain is a critical domain. Hence, this strategy requires the
solution of many BEM problems.

Another possibility to determine the critical domains is bysolving the systems in
(5.16). This yields the matrixCΓ, and subsequently the matrixCaΓ. By calculating
the eigenvalues of the latter matrix the critical scalings can be found. Again we have
to solve two non-standard BEM problems to compute the critical scalings.

REMARK : The BIEs for the Stokes flow in 2D are similar to the equations
for plane elasticity. Hence the BIEs for the latter equations suffer from the same
solvability problems as the Stokes equations. A proof of this phenomenon for plane
elasticity is found in literature [95] and is similar to the proof sketched above.

5.4 Invertibility of operator on general domain with mixed
conditions

In the previous section we showed that the boundary integraloperatorG for the
Dirichlet Stokes equations is not invertible for all domains. In this section we
show that this phenomenon extends to the Stokes equations with mixed boundary
conditions.

The starting point is again the BIE for the Stokes equations,

1

2
v + Hv = Gb, atΓ. (5.24)

Suppose that the boundaryΓ is split into two parts,Γ = Γ1
⋃

Γ2. OnΓ1 we prescribe
the velocityv1 while the normal stressb1 is unknown. OnΓ2 we prescribe the normal
stressb2 while the velocityv2 is unknown. The boundary integral operatorsG and
H are split accordingly,

[Gb]i =

∫

Γ
uijbjdΓ =

∫

Γ1

uijb
1
jdΓ +

∫

Γ2

uijb
2
jdΓ =: [G1b1]i + [G2b2]i,

[Hv]i =

∫

Γ
qijvjdΓ =

∫

Γ1

qijv
1
jdΓ +

∫

Γ2

qijv
2
j dΓ =: [H1v1]i + [H2v2]i.

(5.25)

With these notations the BIE is written in the following way,

1

2
vk + H1v1 + H2v2 = G1b1 + G2b2, atΓk, k = 1, 2. (5.26)

We arrange the terms in such a way that all unknowns are at the left-hand side and all
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knowns are at the right-hand side,

H2v2 − G1b1 = G2b2 −H1v1 − 1

2
v1, atΓ1,

1

2
v2 + H2v2 − G1b1 = G2b2 −H1v1, atΓ2. (5.27)

Now we can define an operatorA that assigns to the pair(b1,v2) the two functions
at the left-hand side of (5.27),

[
b1

v2

]

A→
[

H2v2 − G1b1

1
2v

2 + H2v2 − G1b1

]

(5.28)

To study the invertibility of this operator we need to study the homogeneous version
of the equations in (5.27),

H2v2 − G1b1 = 0, atΓ1,
1

2
v2 + H2v2 − G1b1 = 0, atΓ2. (5.29)

Theorem 5.5 There are (at most) two scalings ofΓ such that the homogeneous
equations (5.29) have a non-trivial solution, i.e.A is not invertible.

Proof. From the Dirichlet problem we know that there are (at most) two scalings
of Γ for whichG is not invertible. So there areaI andaII ∈ R and vector functions
qI andqII such that

Gqk = 0, atakΓ, k = I, II. (5.30)

The scalingsak and functionsqk may coincide but this does not affect the proof of the
theorem. Denote the nullspace of the operatorG by N(G). The normal vectorn is
always inN(G). If Γ is a critical boundary then alsoqI andqII are inN(G). Assume
thatΓ is such a critical boundary. Letq ∈ N(G), that isq = α1qI +α2qII +α3n, for
someα1, α2 andα3 in R, andGq = 0. Consider the homogeneous equations (5.29).
We will show that there is a non-trivial pair(b1,v2) that satisfies these equations. We
choosev2 = 0 andb1 = q1 + h1. Hereqi is the restriction ofq to Γi, i = 1, 2,
andh1 is still unknown. Substituting these functions in the left-hand sides of the
homogeneous equations yields for both equations

−G1b1 = −G1q1 − G1h1 = G2q2 − G1h1, (5.31)

where we made use ofGq = G1q1 + G2q2 = 0. If we can find a functionh1 such
thatG1h1 = G2q2, then the left-hand sides of the homogeneous equations yield zero
and we have found a non-trivial solution. Our task is then to prove that a functionh1

exists such that

G1h1 = G2q2. (5.32)
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A function b is in N(G)⊥ if it is perpendicular toq ∈ N(G)⊥. Hence, the inner
product ofq andb should be equal to zero, i.e.

∫

Γ
qi(x)bi(x)dΓx = 0. (5.33)

First we note that the right-hand side of (5.32) is containedin N(G)⊥, since
∫

G
qi[G2q2]idΓx =

∫

Γ
qi(x)

∫

Γ2

uij(x,y)q2j (y)dΓydΓx

=

∫

Γ2

q2j (y)

∫

Γ
uij(x,y)qi(x)dΓxdΓy

=

∫

Γ2

q2j (y)[Gq]jdΓy = 0. (5.34)

So we may generalize our task: prove that a solutionh1 of

G1h1 = φ (5.35)

exists, for anyφ ∈ N(G)⊥. If so, thenφ = G2q2 completes the proof. It is known
that the operatorG is a Fredholm operator with index zero [29]. Hence the Fredholm
alternative can be applied [70, p. 37]. This states that the homogeneous equation
Gh = 0 either has the trivial solution, or a set of non-trivial linearly independent
solutions. We are in the second situation, as the nullspace of G is non-empty and is
spanned byn, qI andqII . The Fredholm alternative further states thatGh = φ is
solvable if and only ifφ is perpendicular to the solutions ofG∗f = 0, whereG∗

denotes the adjoint operator ofG. However, the single layer operator for the Stokes
equations is self-adjoint, soG∗ = G. Consequently the solvability condition says
thatφ has to be perpendicular to the solutions ofGh = 0. This is the case since we
definedφ ∈ N(G)⊥. Consequently there exists anh with Gh = φ, for φ ∈ N(G)⊥.
We split thish into two parts,

h =

{
h1, atΓ1,

h2, atΓ2.
(5.36)

Recall that we search forh1 such thatG1h1 = φ. We addG2h2 to both sides of this
equation, obtaining

G1h1 + G2h2 = φ+ G2h2, (5.37)

or shorter

Gh = φ+ G2h2. (5.38)
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The right-hand side of this equation is inN(G)⊥, sinceφ ∈ N(G)⊥ and
∫

G
qi[G2h2]idΓx =

∫

Γ
qi(x)

∫

Γ2

uij(x,y)h2
j (y)dΓydΓx

=

∫

Γ2

h2
j (y)

∫

Γ
uij(x,y)qi(x)dΓxdΓy

=

∫

Γ2

h2
j (y)[Gq]jdΓy = 0, (5.39)

soG2h2 is also inN(G)⊥. Recall thatGh = φ+ G2h2 is solvable if the right-hand
side is inN(G)⊥, so there exists anh satisfying (5.38). Then we may constructh1

by simply restrictingh to Γ1, i.e.h1 = h|Γ1
. �

This result shows that also the BIE for the Stokes equations with mixed boundary
conditions may become singular. This happens for the same critical boundaries as for
the Stokes equations with Dirichlet boundary conditions. Hence the mixed problem
inherits the singularities from the Dirichlet problem. Thedivision of the boundary
into a Dirichlet and a Neumann part does not play a role in this.

Note that the Laplace equation exhibits the same behaviour.The boundary
integral equation for the Laplace equation with mixed boundary conditions also
inherits the solvability problems from the BIE for the Dirichlet case [39].

5.5 Numerical examples

To solve the BIEs (5.9), the boundaryΓ is discretised into a set ofN linear elements.
At each element the velocityv and normal stressb are approximated linearly. In this
way the BIEs are transformed into a linear system of algebraic equations (for details
about the discretisation we refer to any BEM handbook [6, 10]). We introduce vectors
v andb of length2N containing the coefficients ofv andb at the nodal points. Then
the system of equations can be written in short-hand notation as

(
1

2
I + H)v = Gb. (5.40)

HereG andH are the discrete counterparts of the single and double layeroperator.
For the Dirichlet problem, the coefficients of the velocity vectorv are given, say

v = ṽ, and we need to solve

Gb = f(ṽ) := (
1

2
I + H)ṽ (5.41)

to find the unknown coefficients of the normal stress vectorb.
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If the boundary integral operatorG is not invertible then its discrete counterpart,
the matrixG is ill-conditioned. To visualize this we compute the condition number
of G: if the condition number is infinitely large, then the matrixis not invertible. As
a consequence, the linear system (5.41) is singular and cannot be solved for arbitrary
right-hand side vectorsf . If the condition number is bounded but very large, then still
the problem (5.41) is difficult to solve numerically.

In the following examples we construct the matrixG for a certain boundaryΓ
and compute the condition number of this matrix. Then we rescale the boundaryΓ
by a factora, i.e. Γ → aΓ. Again we compute the condition number of the matrixG.
We do this for several values of the scaling parametera. According to the theory in
the previous sections there are two critical scalings for which the integral operatorG
is not invertible. For these two scalings also the matrixG is not invertible, or at
least very ill-conditioned. Hence we expect that the condition number ofG jumps
to infinity at these two scalings. The scaling for which such large condition numbers
appear is again called acritical scalingand has ideally the same value as the critical
scaling defined for the BIE in the previous section. However,due to the discretisation
of the equations, the critical scaling for the discrete problem may be slightly different
from the critical scaling for the BIE. In the limitN → ∞ these differences vanish.
Analogously to the critical scaling, we define thecritical boundaryto be the boundary
for which the condition number gets very large.

Example 5.1

In Figure 5.1 we show the condition number as a function of thescalea. We do
this for an ellipse with aspect ratio0.4 (to which we refer to as ellipse 1) and for an
ellipse with aspect ratio0.7 (to which we refer to as ellipse 2). We observe that for
both cases two critical scalings exist for which the condition number goes to infinity.
Moreover, these critical scalings differ significantly forthe two ellipses. For ellipse 1
we find critical scalings1.9 and2.9 approximately, while for ellipse 2 we find1.8
and2.1. Hence the shape of the ellipse, i.e. its aspect ratio, greatly influences the
values of the critical scalings.

Figure 5.2 visualises all ellipses for which the condition number ofG is very
large, i.e. all critical ellipses with different aspect ratios. At the horizontal axis we
put the lengtha of the horizontal semi-axis of the ellipse, at the vertical axis the
lengthb of the vertical semi-axis of the ellipse. We compute the condition number of
G for several values ofa andb. We call the values ofa andb for which the condition
number goes to infinity thecritical sizesand the corresponding ellipse the critical
ellipse. At thecritical sizeswe plot a dot in the(a, b)-plane of Figure 5.2. We see
that the critical sizes lie on two curved lines, which are symmetric around the line
a = b. It can be concluded that for an ellipse with fixed aspect ratio d := a/b 6= 1,
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Figure 5.1: Condition number ofG for an ellipsoidal domain with aspect ratios0.4 and0.7
as a function of scaling parametera.
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Figure 5.2: The critical sizes of an ellipse for which the condition number ofG is very large.
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Figure 5.3: The critical sizes of a rectangular domain with rounded corners.

two critical sizes exist. For a circle, whered = 1, only one critical size exists. The
values corresponding to this critical size are approximately a = b = 1.65, which
agrees with the critical scaleexp(1/2) ≈ 1.649 that we found in Section 5.2. �

Example 5.2

In Figure 5.3 we show the critical sizes for a rectangle with rounded corners. The
results look similar to those of the ellipse; again there arealways two critical sizes,
except when the aspect ratio of the domain is equal to one. �

Example 5.3

In the case of mixed boundary conditions we may rearrange terms in the linear
system (5.40) and put all known coefficients at the right-hand side and all unknown
coefficients at the left-hand side. Then we obtain a linear system of the form

Ax = g. (5.42)

The matrixA consists of a block from the matrixG and a block from the matrix
H. We compute the condition number of the matrixA for the case of an ellipsoidal
boundary. This ellipse is approximated by16 linear elements. At the first eight
elements we impose Dirichlet boundary conditions and at thelast eight elements we
impose Neumann boundary conditions. Then we rescale the boundary by a factora
and compute the condition number for the new situation.
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Figure 5.4: Condition number ofA for an ellipsoidal domain with aspect ratios0.4 and0.7
with mixed boundary conditions, as a function of scalinga.
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Figure 5.5: The critical sizes of an ellipse with mixed boundary conditions for which the
condition number ofA is very large.

Figure 5.4 shows the condition number of the matrix for an ellipse with aspect ratio
0.4 and an ellipse with aspect ratio0.7. We see that there exist two critical scalings for
each ellipse. For these critical ellipses the condition number ofA becomes infinitely
large.

The critical sizes of the ellipse in the case of mixed conditions are close to the
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Figure 5.6: The critical sizes of rectangle with rounded corners with mixed boundary
conditions for which the condition number ofA is very large.

critical sizes for the case of Dirichlet conditions. In Figure 5.5 we show all critical
sizes of the ellipse for the case of mixed conditions. One canobserve that this plot
resembles the plot in Figure 5.2 for Dirichlet conditions. This confirms the idea that
the BIE for the mixed case inherits the solvability problem from the BIE for the
Dirichlet case. Note that the graph in Figure 5.6 is not symmetric anymore, as was
the case for Dirichlet boundary conditions. This asymmetries are caused by the fact
that the Dirichlet elements and Neumann elements are not distributed symmetrically
over the boundary. �

Example 5.4

In Figure 5.6 we show the critical sizes of a rectangular domain with rounded corners
with mixed boundary conditions. The results look similar tothose of rectangle with
Dirichlet conditions (Figure 5.3). �

Example 5.5

We now turn our attention to a time-dependent problem. We study a viscous drop of
fluid of ellipsoidal shape that deforms to a circle due to surface tension. The evolution
of the boundary of the drop is governed by the Stokes equations and can be solved
using the BEM [78, 93]. The velocityv of the boundary and the normal stressb at
the boundary are related by the BIE (5.9). The normal stressb is proportional to the
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Figure 5.7: An ellipse with aspect ratio0.5 deforming to a circle.

mean curvatureκ of the boundary,

b = −2γκn, (5.43)

with γ the surface tension andn the outward normal at the boundary.
At time levelt = t1 we compute the velocityv at all discretisation nodesx. We

fix a time step∆t and update the boundary of the drop with an Euler forward step,

x→ x+ ∆tv(x), (5.44)

obtaining a new boundary. For this new boundary we again compute the velocity, and
perform another Euler forward step. In this way we can study the shape evolution of
the boundary. In Figure 5.7 we see the evolution of the ellipse to a circle. The initial
shape is an ellipse with aspect ratio0.5 and the longest semi-axis has a length1.2. We
choose40 points to discretise the boundary, the size of the time step is ∆t = 0.375
and we compute10 time steps.

In the problem described above the normal stress is prescribed and the velocity
has to be reconstructed with equation (5.9). We can also formulate a problem in
which we try to reconstruct the normal stress given the boundary velocity. It is this
problem that we study in this example. To solve this problem we need to invert the
matrix G at each time step. We know that there are certain critical boundaries for
which the matrixG will not be invertible. In the problem of the deforming ellipse we
go through a whole range of ellipses with different shapes, and we risk to encounter
one or more of those critical boundaries.

In Figure 5.8 we show the condition number of the matrixG at each time step
for a certain ellipse. An increase in the condition number indicates that the boundary
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Figure 5.8: The condition number ofG at each time step without scaling.
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Figure 5.9: The condition number ofG at each time step with temporary scaling when the
domain is close to a critical domain.

under consideration is close to a critical boundary. We see that there is one time level
in which such a critical boundary is reached. In this case we choose20 discretisation
points, a time step size∆t = 0.002 and30 time steps.

There is a simple way to avoid a critical boundary. When the size of the boundary
gets close to the critical boundary, we temporarily scale the domain. In Figure 5.9
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without scaling with scaling difference

area 10.59729837 10.5972852 1.3150e − 05

length 12.97535126 12.9751271 2.2412e − 04
a 2.759578290 2.75949155 8.6740e − 05
b 1.241866240 1.24190168 −3.5440e − 05

Table 5.2: Difference in the BEM with and without temporarily rescaling. Listed are the
surface area, the length of the boundary and the length of thesemi-axes at timet = 0.06.

we show the outcome of this strategy. At each time step between t = 0.038 and
t = 0.046 we scale the domain by a factor1.02. Then we solve the BEM problem
for each of these time steps and the solutions are rescaled bya factor1/1.02. As a
consequence the condition number of the BEM-matrices in these time steps does not
become very large. The scaling of the domain during some timesteps does hardly
affect the outcome of the test. In Table 5.2 we give the surface area, the length of the
boundary and the sizes of the semi-axes at the final time levelt = 0.06. Their values
hardly change when we perform temporary scaling.

Of course, for this strategy certain knowledge is needed about the critical
boundaries, although we do not need to know the exact critical boundary. We only
have to make sure we do not get too close to it. In the current test we only scaled at
a restricted number of time steps. In general one could scaleat every time step, thus
excluding the possibility that a critical boundary is encountered.

The size of the initial ellipse strongly affects the condition number of the matrix
at each time level as the ellipse deforms. In Figure 5.10 we show the size (a andb)
of an ellipse while it deforms. The size of the initial ellipse is shown with a large
dot, whereas the sizes it takes as it deforms to a circle are denoted by the trajectory
starting in the dot. All ellipses deform to a circle, which isseen from the fact that all
trajectories converge to the straight dashed line wherea = b.

The dashed-dotted lines represent all critical ellipses, c.f. Figure 5.2. When the
trajectory of an ellipse crosses one of the two dashed-dotted lines, it means that the
ellipse at that time level is a critical ellipse. For this particular ellipse the condition
number will be large. The trajectories of some ellipses never cross such a line of
critical ellipses. This means that they never get a criticalsize as they deform to a
circle. For other ellipses there is one point along their trajectory where the ellipse
is a critical ellipse. It is also possible that an ellipse becomes critical twice during
the deformation. An example is the ellipse with initial sizea = 4 and b = 0.8.
The trajectory of this ellipse crosses the line with critical ellipses twice. Figure 5.11
shows the condition number for this particular case. It can be seen that the condition
number gets very large at the beginning and at the end of the time interval. �
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Figure 5.10: Each solid line represents the size of an ellipse as it deforms to a circle. The
initial size, i.e. the lengthsa andb of the semi-axes, is denoted with a large dot. The dashed-
dotted lines represent the critical sizes. The dashed line represents all circles.
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Figure 5.11: The condition number for the ellipse with initial valuesa = 4 and b = 0.8.
During the deformation to a circle this particular ellipse gets a critical size twice.
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Figure 5.12: A viscous fluid is positioned into a mould. The boundary of thefluid consists of
two semi-circles having radii1 and1 + d.

5.6 Blowing problem in 2D

It is shown that the Helmholtz boundary integral equation for domains with thin parts
causes numerical instabilities, especially as the thickness of the thin part approaches
zero; this phenomenon is calledthin-shape breakdown[32, 69]. In this section we
investigate whether a similar phenomenon exists for the BIEs for the Stokes equations
in 2D. In particular we want to know how the BEM-matrices are affected by a part of
the domain whose thickness approaches zero.

To this end we study a special application of the Stokes equations, a problem that
occurs in the blowing of glass bottles, as explained in Chapter 6 . In this problem
an amount of viscous fluid is positioned into a mould as depicted in Figure 5.12. At
the topy = 0 (Γ2) the fluid is fixed, while it is free to move everywhere else. Atthe
boundaryΓ1 a pressurep1 is applied, which causes the fluid to move downwards and
sideways, into the mould. In the current section we investigate the blowing problem
for an arbitrary viscous fluid. We do not address the time-dependent problem: for a
certain initial shape we compute the velocity field of the fluid.

The flow of viscous fluids is described by the Stokes equations. The BEM can
solve these equations and yields the velocity field at the boundary of the fluid. In
this section we investigate whether the BEM-matrices that appear when solving the
blowing problem become singular. We assume that the fluid is rotationally symmetric
such that we can investigate the flow in a 2D setting. The initial boundary of the fluid
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consists of two concentric semi-circles separated by a distanced, as can be seen in
Figure 5.12. The inner circle has radius1, so the outer circle has radius1 + d. The
idea is thatd will always be small compared to the radii of the circles, thus creating
a thin structure.

The boundary value problem that has to be solved for the blowing problem is
given by (for more details we refer to Chapter 6)

∇2v −∇p = 0, atΩ,

∇.v = 0, atΩ,

σn = 0, atΓ0,

σn = −p1n, atΓ1,

v = 0, atΓ2. (5.45)

Hence we prescribe the normal stress at the part of the boundary where the pressure
is applied. At the other part of the free boundary we prescribe zero normal stress.
The BEM transforms the boundary value problem into a linear system,

(
1

2
I + H)v = Gb, (5.46)

wherev andb are vectors with the coefficients of the velocity and the normal stress
at each of theN nodes along the boundary. In this example we use linear elements;
hence the velocity and normal stress vary linearly over eachelement. As the two
boundary partsΓ2 are very small, each part is modelled by one element only. Since
the boundary of the domain mainly consists of two parts, i.e.the inner and the outer
semi-circle, the matrixG can be written as a block matrix,

G =

[

G1 G2

G3 G4

]

. (5.47)

The block matrixG1 corresponds with integration over the inner semi-circleΓ1 while
all collocation nodes are atΓ1. Similarly G4 is related solely to the outer circleΓ0.
Hence to compute these blocks we do not require any information from the opposite
boundary part. The block matricesG2 andG3 correspond to integration over one
semi-circle while the collocation nodes are at the oppositesemi-circle. Let us assume
that the number of boundary elementsN is an even number.
If the unknowns in the vectorb are ordered as

b = [b1x, . . . , b
N/2
x , b1y, . . . , b

N/2
y , bNx , . . . , b

N/2+1
x , bNy , . . . , b

N/2+1
y ]T , (5.48)
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d ‖G − Ĝ‖∞ d ‖G − Ĝ‖∞
0.1 3.26 · 10−2 0.0025 1.72 · 10−3

0.05 2.06 · 10−2 0.001 7.57 · 10−4

0.025 1.23 · 10−2 0.0005 3.90 · 10−4

0.01 5.78 · 10−3 0.00025 1.99 · 10−4

0.005 3.18 · 10−3 0.0001 9.87 · 10−5

Table 5.3: The matrixG approaches the matrix̂G as the thicknessd goes to zero.

and the equations in the BEM are ordered in the following way,

equation atx1
... in x-direction
equation atxN/2

equation atx1
... in y-direction
equation atxN/2

equation atxN
... in x-direction
equation atxN/2+1

equation atxN
... in y-direction
equation atxN/2+1

, (5.49)

it can be shown that the matrixG approaches the singular matrix̂G in the limit d ↓ 0,

lim
d↓0

G = Ĝ :=

[
G1 G1

G1 G1

]

. (5.50)

Table 5.3 shows the max-norm ofG − Ĝ for decreasing values ofd. We see that as
d ↓ 0 indeedG → Ĝ. Thus the matrixG can be seen as a perturbation of the matrix
Ĝ around the pointd = 0. Table 5.3 suggests that the difference betweenG andĜ

depends linearly ond.
It is straightforward to see that any vectorx of the formx = [x1 −x1]

T , x1 ∈ R
N ,

is an eigenvector of̂G with eigenvalue0. Hence the eigenvalue0 has an eigenspace
with dimension (at least)N , and is spanned by

{
[1, 0, . . . , 0,−1, 0, . . . , 0]T , . . . , [0, . . . , 0, 1, 0, . . . , 0,−1]T

}
. (5.51)
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m ‖G −GS‖∞ m ‖G − GS‖∞
4 2.0 · 10−3 20 5.8 · 10−5

8 5.2 · 10−4 24 2.6 · 10−5

12 2.1 · 10−4 28 2.7 · 10−5

16 1.1 · 10−4 32 1.7 · 10−5

Table 5.4: The difference between the matrixG, computed with the help of a Gauss-Legendre
scheme withm knots, and the matrixGS , computed with the help of an adaptive Simpson
scheme.

Consider the matrixG as a function ofd, G = G(d), and introduce a function
F : R

2N × R → R
2N by

F (x, d) := G(d)x. (5.52)

If G(d) is computed exactly, there existN roots of the equationF = 0, namely
(x∗, d∗), wherex∗ = [x1 −x1]

T , x1 ∈ R
N , andd∗ = 0. However in realityG

cannot be computed exactly since we make use of numerical integration schemes to
approximate integrals, so in fact we deal with a matrixG + E, with ‖E‖ small. If
the numerical integration is performed very accurately, the matrixE approaches the
zero matrix. For the true matrixG + E we findM ≤ N of roots of the equation
F = 0, namely(x∗, d∗), wherex∗ ≈ [x1 − x1]

T , x1 ∈ R
N , andd∗ small, but not

necessarily0.
The numerical integration error that is made by the Gauss-Legendre quadrature

scheme that we use here is particularly large for the blowingproblem that we study.
To illustrate this we first compute the BEM-matrixG by using an adaptive Simpson
scheme with accuracy10−16. Adaptive schemes put more effort in approximating the
integrals near singularities. These schemes keep increasing the number of knots near
singularities, until the required accuracy is obtained. The Gauss-Legendre scheme
treats each subinterval of the integration path equally, and does not verify whether a
certain accuracy is obtained. Therefore the adaptive Simpson scheme approximates
integrals with a logarithmic singularity much more accurate than the Gauss-Legendre
scheme. We denote the matrix whose integrals are approximated with an adaptive
Simpson scheme byGS and compare it to the matricesG that are computed by
using a Gauss- Legendre scheme withm knots. In Table 5.4 we show the max-norm
of G−GS . We see that the matricesG approachGS very slowly. Even with as much
asm = 32 knots the difference betweenG andGS is still 10−5. Hence the Gauss-
Legendre scheme is much less accurate than the adaptive Simpson scheme. The
cause of this large error lies in the fact that the two semi-circles of the boundary are
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Figure 5.13: The condition number of the BEM-matrixG as a function of the thicknessd of
the geometry.
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separated by a small distance. In the computations of the BEM-matrix G, integrals
that involve the termlog ‖x − y‖ have to be evaluated, wherex is a point at one
semi-circle andy a point at the opposite semi-circle. Hence whend approaches zero,
the distance‖x− y‖ betweenx andy becomes very small, and a nearly logarithmic
singularity appears in the integrals. The Gauss-Legendre scheme cannot approximate
such integrals accurately enough [49, 84].

As a consequence, the matrixG is not computed accurately, and the equation
F = 0 has a number of roots(x∗, d∗) in which thed∗ are unequal to zero. To
illustrate this we compute the BEM-matrixG for several values ofd and compute
its condition number. In Figure 5.13(a) we show the condition number ofG as a
function ofd. For this example the boundary of the fluid is discretised withN = 18
boundary elements and the Gauss-Legendre scheme usesm = 6 knots. We observe
that for 6 values ofd the condition number jumps to infinity. These values ofd
correspond to the roots ofF = 0.

If we increase the number of boundary elementsN and compute the matrix
elements ofG exactly, the number of roots ofF = 0 also increases, as there are
N such roots. IfG is not computed exactly, as is the case with the Gauss-Legendre
scheme, we may also expect to find more roots ofF = 0. Figure 5.13(b) and
Figure 5.13(c) confirm this idea. For Figure 5.13(b) we choose N = 20 boundary
elements and for Figure 5.13(c) we chooseN = 22 boundary elements. ForN = 20
we observe8 values ofd for which the condition number jumps to infinity, and for
N = 22 even10 of such values.

If we improve the accuracy of the numerical integration, we expect to approach
the exact matrixG better. As a consequence the roots ofF = 0 should also
approach the roots of the exact equation better. Hence the values ofd∗ should go
to 0 if we improve on the numerical integration. Figure 5.14 confirms this idea. The
matricesG whose condition numbers are shown in Figure 5.14(a) are computed with
a Gauss-Legendre scheme withm = 6 knots. For the matrices in Figure 5.14(b) and
Figure 5.14(c) we usem = 7 andm = 8 knots respectively. Indeed we observe that
the values ofd for which the condition number jumps to infinity approach zero asm
increases.

As we already noted before, the Gauss-Legendre schemes are not the most
appropriate numerical integration schemes for this particular blowing problem.
Adaptive schemes are better equipped for the blowing problem. In the next example
we compute the BEM-matrixG for several values ofd using an adaptive Simpson
scheme with accuracy10−6. With this accuracy the integrals inG are approximated
accurately enough compared to the Gauss-Legendre scheme, whose accuracy is only
10−5 for m = 32. The condition number ofG is plotted in Figure 5.15. We see that,
except ford ↓ 0, there is no other value ofd for which the condition number ofG
goes to infinity. The large condition number ford ↓ 0 is expected, asG approaches
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Figure 5.14: The condition number of the BEM-matrixG as a function of the thicknessd of
the geometry. The number of boundary elements isN = 18.



Section 5.6 Blowing problem in 2D 93

0 0.005 0.01 0.015 0.02 0.025

10
4

10
6

10
8

10
10

thickness d

co
n

d
(G

)

Figure 5.15: The condition number of the BEM-matrixG as a function of thicknessd.
The number of boundary elements isN = 18. Numerical integration is performed with
an adaptive Simpson scheme with accuracy10−6.

the singular matrix̂G very well in these cases.
The blowing problem covered in this section shows that the numerical integration

needs special attention in the case of thin domains, i.e. twoboundary parts of the
domain are separated by a small distance only. For such domains, in particular for
the thin parts of such domains, the Gauss-Legendre quadrature scheme performs
poorly when approximating the integrals that appear in the BEM-matrices. As a
consequence, for some values ofd the condition number ofG becomes infinitely
large.



Chapter 6

Three-dimensional Stokes flow

In this chapter and the subsequent chapter we extend our research on the Stokes
equations to three dimensions. We develop a mathematical model for a particular
application: the blowing problem in 3D. We show that the BEM is a suitable
numerical method to solve such problems. These chapters arean elaboration of
earlier work of the author et al. [36, 40] concerning the numerical modelling of
the blowing phase in the production of glass containers.

6.1 Simulating the blowing of glass containers with the
BEM

In 3D the Stokes boundary integral equations cannot become singular at specific sizes
or shapes of the domain, contrary to the Stokes boundary integral equations in 2D.
The reason for this is the absence of a logarithmic term in thefundamental solution
for the 3D Stokes equations. It is this logarithmic term thatis the essence of the
existence of critical domains in 2D. Hence we can safely construct a 3D BEM model
for the class of blowing problems. In the blowing problem a viscous fluid is blown to
a desired shape. We want to see whether the BEM is an appropriate numerical method
to solve this blowing problem. As a special application we consider the blowing of
glass containers.

The industrial production of glass containers like bottlesand jars consists
of several phases. First glass is moulten in a furnace where the glass reaches
temperatures between1200 and 1600 ◦C. The molten glass is then cut intogobs,
which are transported to a forming machine.

The gob falls into a mould, and a plunger is pushed into the mould, shaping the
glass to an intermediate form called theparison. This phase of the production process

94
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(a) Pressing phase (b) Blowing phase

Figure 6.1: The production of glass containers consists of a pressing phase and a blowing
phase.

is called thepressing phase(Figure 6.1(a)). The parison is put into a second mould in
which it is allowed to creep in vertical direction (sagging) due to gravity for a short
period of time. Then the parison is blown to its final shape by an inflow of pressurized
air. This phase of the production process is called theblowing phase(Figure 6.1(b)).

For the glass industry it is important to optimize each phaseof the production
process. One can think of optimizing the shape of the parison, the speed of the
plunger, the sagging time, the pressure of the air during theblowing phase, etc [68].
Experiments to tune these parameters are cumbersome, costly and time consuming.
Therefore computer simulation of the various production phases can offer useful
information to optimize the production.

In this thesis we study the flow of the glass during the blowingphase. We assume
that the shape of the parison and the shape of the mould are given, and also the
pressure of the inflowing air is prescribed. Given these settings the BEM computes
the velocity at the boundary of the glass by solving the Stokes equations. Then we
perform a time integration step to obtain the shape of the glass at the next time level.
For this new shape we again compute the velocity at the boundary and perform a new
time integration step. This iterative procedure enables usto study the shape evolution
of the glass during the blowing phase. The computations are performed in three
dimensions. This allows studying bottles and jars that are not rotationally symmetric,
for instance due to small imperfections in the initial parison.

Numerical modelling of the production process of glass bottles and jars has been
the topic of several papers. Mostly finite element methods are used to simulate the
glass flow [12, 13], sometimes using a level set method to track the position of the
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glass boundary [45]. In many cases rotationally symmetric parisons are modelled and
computations are limited to two dimensions. To the author’sknowledge our work is
the first to address the blowing problem in three dimensions using the BEM.

During the blowing phase the temperature of the glass changes due to heat
exchange with the mould. The viscosity of the glass depends on the temperature
in an essentially non-linear fashion. As the viscosity appears in the Stokes equations,
the heat and flow problem are coupled. However we show that during the blowing
phase we may consider a homogeneous temperature. Consequently also the viscosity
becomes homogeneous and the heat and flow problem can be addressed separately.
In the papers mentioned above the heat problem is studied intensively. In this thesis
we therefore focus on the flow problem.

In Figure 6.2 we schematically depict the glass and the mould. We assume that at
the top (S2) the glass touches the mould and cannot move. At the other parts where
the glass touches the mould (S3) it is allowed to slip along the mould. At the inlet
of the mould (S1) pressurized air flows in, while at the bottom of the mould (S0)
standard pressure is maintained.

Special attention has to be paid to the contact problem between the glass and the
mould. Most papers assume a no-slip condition at the mould surface, i.e. glass cannot
slip along the surface. In practice this is not the case. Sometimes the mould is even
covered with a lubricating substance to improve the slip of the glass. Therefore we
choose to work with a partial-slip boundary condition instead of a no-slip boundary
condition.

The procedure described above results in a simulation tool that can be used to
study the blowing phase for glass products. We have tested the simulation tool on
several bottles and jars. The results of the tests are promising and may contribute to
a better understanding of the production of bottles and jars.

6.2 Mathematical model

In this section we derive the mathematical model that describes the flow of a
Newtonian fluid with high viscosity in three dimensions. Letthe fluid domain be
denoted byΩ, bounded by a closed surfaceS. The velocity and pressure of the fluid
are denoted byv andp respectively. Furthermore the fluid is characterized by the
dynamic viscosityη, a surface tensionγ and a typical length scaleL. In general the
viscosityη depends on the temperature of the glass. As the temperature may be space
dependent, also the viscosity may be space dependent. However, later on we show
that for the blowing problem the glass has a uniform temperature distribution, and
henceforth the viscosity is uniform also.
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The motion of the fluid is governed by two equations. The continuity equation
expresses conservation of mass,

∇.v = 0, (6.1)

where we assume that the densityρ of the fluid is constant and uniform, i.e. the
fluid is incompressible. Vector fields that satisfy (6.1) arecalled solenoidal. The
Navier-Stokes equationsexpress conservation of momentum,

ρ
∂v

∂t
+ ρ(∇.v)v = ∇.σ + ρg, (6.2)

whereg is a body force (here we consider only gravitational forceg := −gez, with
g the gravitational constant) andσ is the stress tensor. For the Newtonian fluid that
we consider the following constitutive law for the stress tensor holds,

σij := −pδij + 2ηEij . (6.3)

Hereδij is the Kronecker delta andE is the rate of deformation tensor, defined as

Eij :=
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)

. (6.4)

With the constitutive law forσ the Navier-Stokes equations become

ρ
∂v

∂t
+ ρ(∇.v)v = −∇p+ η∇2v + ρg. (6.5)

We distinguish four types of boundary conditions at different parts of the surface,
as can be seen in Figure 6.2. At the surfacesS0 andS1 the normal stress is related to
the prescribed pressuresp0 andp1 onto the surface and the surface tensionγ,

σn = −p0n− γκn, atS0,

σn = −p1n− γκn, atS1. (6.6)

The first term in the boundary condition accounts for the external pressure acting onto
the surface. Heren stands for the outward unit normal at the surface. The second
term accounts for the surface tension due to the curvature ofthe surface. In the fluid
all molecules attract one another. A molecule that is in the interior of the fluid domain
is attracted by all its neighbours, so the average force it experiences is equal to zero.
A molecule at the surface of the fluid has only neighbouring molecules at one side,
and experiences a force into the fluid. For highly curved surfaces this force will be
larger than for flat surfaces. The curvature of the surface ismeasured by themean
curvatureκ with dimensionL−1. In Appendix A we present a way to approximate
the curvature numerically.
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Figure 6.2: Cross-sectional view of the set-up of the blowing problem. The glass is positioned
in a mould. The surface of the glass is divided into four parts.

At the surfaceS2 we assume that the fluid is in contact with the mould. The fluid
is not allowed to slip and hence we set the velocity equal to zero,

v = 0, atS2. (6.7)

At the surfaceS3 the fluid is in contact with the mould, but is allowed to slip along the
wall of the mould. This means that the velocity component in the normal direction to
the wall is equal to zero, i.e. the fluid cannot penetrate the wall,

v.n = 0, atS3. (6.8)

The velocity components in the tangential directions may not be zero. Navier’s slip
law states that the tangential component of the velocity is related to the normal stress
by [57, 67],

(σn+ βmv).t = 0, atS3. (6.9)

Heret is a vector in the tangential direction at the wall andβm is a friction parameter.
If βm → 0 there is no friction between fluid and wall. Ifβm → ∞ the friction
between fluid and wall is very large and the fluid cannot flow along the wall.
Condition (6.8) together with (6.9) yields the no-slip condition (6.7) whenβm = ∞.

We introduce a dimensionless pressurep′, velocityv′ and body forceg′ by

p′ :=
p− p0

p1 − p0
, v′ :=

v

vc
:=

ηv

(p1 − p0)L
, g′ := −ez. (6.10)
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We also define a characteristic time scaletc := L/vc. Using these characteristic
variables and usingL as a characteristic length, we rewrite the Navier-Stokes
equations in dimensionless form as

Re

(
∂v′

∂t′
+ (∇′.v′)v′

)

= −∇′p′ + ∇′2v′ +
Re
Fr
g′. (6.11)

Here the differential operator∇′ denotes differentiation with respect to the
dimensionless spatial coordinates. The dimensionless numbers Re and Fr are the
Reynolds numberand theFroude numberrespectively, defined as

Re :=
ρLvc

η
,

Fr :=
v2
c

gL
. (6.12)

For the type of fluids that we consider here, the Reynolds number is about10−3

or smaller. For instance, for glass the Reynolds number can be computed with the
values of the material properties and process parameters inTable 6.1, and we find
Re= 2.5 · 10−4. This implies that the convective term at the left-hand sideof (6.11)
can be neglected. This reduces the Navier-Stokes equationsto theStokes equations
with body force term,

∇′2v′ −∇′p′ + αg′ = 0, (6.13)

whereα := Re/Fr. Together with the dimensionless form of (6.1)

∇′.v′ = 0, (6.14)

we obtain a system of four equations that describe the flow of the fluid. It can be
verified that the dimensionless stress tensorσ′ is given by

σ′ := − p0

p1 − p0
I +

1

p1 − p0
σ. (6.15)

We also introduce a dimensionless curvatureκ′ by κ′ := Lκ. Substitution ofσ′ and
κ′ into the boundary conditions atS0 andS1 yields

σ′n = −βκ′n, atS0,

σ′n = −(1 + βκ′)n, atS1, (6.16)

where the dimensionless numberβ is defined as

β :=
γ

(p1 − p0)L
. (6.17)
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The boundary condition atS2 becomes

v′ = 0, atS2. (6.18)

It can be verified that substitution ofσ′ andv′ into the second part of the boundary
condition atS3 yields

−p0n.t+ (p1 − p0)(σ
′n+

Lβm

η
v′).t = 0. (6.19)

The first term vanishes sincen.t = 0. We divide byp1 − p0 and and obtain the
following boundary conditions atS3,

(σ′n+ β′mv
′).t = 0,

v′.n = 0, atS3, (6.20)

where the dimensionless numberβ′m is defined as

β′m :=
Lβm

η
. (6.21)

In the sequel we drop the′ to simplify to notation.
We introduce a modified pressurep̃ by [77, p. 164]

p̃ := p+ αz, (6.22)

wherez is the vertical coordinate. Since∇p̃ = ∇p+αez = ∇p−αg, the momentum
balance simplifies to

∇2v −∇p̃ = 0, in Ω. (6.23)

We may define a new stress tensorσ̃ by

σ̃ = σ̃(p̃,v) := −αzI + σ(p,v). (6.24)

Substitution of this new stress tensor into the boundary conditions atS0 andS1 yields

σ̃n = −(αz + βκ)n, atS0,

σ̃n = −(1 + αz + βκ)n, atS1. (6.25)

Thus we have moved the body force term from the Stokes equations to the boundary
conditions. It can be verified that substitution ofσ̃ into the second part of the
boundary condition atS3 yields

αzn.t+ (σ̃n+ βmv).t = 0. (6.26)
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The first term vanishes sincen.t = 0 and we obtain the following conditions atS3,

(σ̃n+ βmv).t = 0,

v.n = 0, atS3, (6.27)

To summarize, the equations and boundary conditions in dimensionless form are
given by

∇2v −∇p̃ = 0, in Ω,

∇.v = 0, in Ω,

σ̃n = −(αz + βκ)n, atS0,

σ̃n = −(1 + αz + βκ)n, atS1,

v = 0, atS2,

(σ̃n+ βmv).t = 0, atS3,

v.n = 0, atS3. (6.28)

In the sequal we will omit thẽ.
This thesis does not aim addressing the heat change in the glass and the heat

exchange between glass, air and mould. However, the temperature does enter the
Stokes equations via the viscosity of the glass. In general the viscosityη depends on
the temperature of the glass. Often in glass problems this dependence is modelled
with theVogel-Fulcher-Tamman relation[7], which is given by

η = η0 exp

(
B

T − TV F

)

. (6.29)

HereT is the temperature of the glass andη0, B andTV F are the so-calledLakatos
coefficients.

We show that for the blowing problem it is not necessary to include the
temperature dependence of the viscosity into our model. To see this consider the
energy equation (still in dimension-full notation)

ρcp
∂T

∂t
+ v.∇T = kc∇2T + ∇ (kr(T )∇T )

+ η
(
(∇v+ ∇vT ) : ∇v

)
. (6.30)

The three terms on the right-hand side of this equation represent the conduction,
the radiation and the viscous dissipation respectively. The parameterscp, kc andkr

are the specific heat, the conductivity and the Rosseland parameter respectively. We
introduce a dimensionless temperatureT ′ byT = Tm +∆TT ′, with ∆T = Tg−Tm,
Tg being the initial temperature of the glass, andTm being the temperature of the



102 Chapter 6 Three-dimensional Stokes flow

parameter value dimension
L 0.01 m
vc 0.01 m s−1

ρ 2500 kg m−3

η 1000 kg m−1s−1

cp 1350 J kg−1K−1

kc 1.5 W m−1K−1

Tg 1100 ◦C
Tm 600 ◦C
p0 1.00 · 105 kg m−1s−2

p1 1.38 · 105 kg m−1s−2

γ 0.3 kg s−2

Table 6.1: Material properties and process parameters for the glass blowing problem.

mould. The dimensionless form of the heat equation reads (weimmediately omit
the ′ )

∂T

∂t
+ v.∇T =

1

Pe
∇2T + ∇

(
kr(T )

kc

1

Pe
∇T

)

+
Ec
Re

(
(∇v + ∇vT ) : ∇v

)
. (6.31)

Here thePéclet numberand theEckert numberare defined as

Pe:=
ρcpvcL

kc
, Ec :=

v2
c

cp∆T
. (6.32)

Typical values of the parameters involved (see Table 6.1) yield 1/Pe ≈ 10−3 and
Ec/Re ≈ 10−7. Hence the terms on the right-hand side can be neglected and the
energy equation reduces to

∂T

∂t
+ v.∇T = 0. (6.33)

This implies that the temperature remains constant along streamlines. If we assume
that the initial temperature of the glass is uniform in spaceand the mould has a
uniform temperature too, it follows that the glass is isothermal. As a consequence,
also the viscosity can be taken uniform. This shows that the Stokes equations and the
heat equation are decoupled and can be solved separately. Inthis thesis, however, we
are only interested in the flow problem.
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6.3 Boundary integral equations

In this section the mathematical model summarized in (6.28)is transformed into a
set of boundary integral equations [65]. We introduce a vector fielduk(x,y) and a
scalar functionqk(x,y) that satisfy the following Stokes equations,

∇2
xu

k(x,y) −∇xq
k(x,y) = δ(x − y)ek,

∇x.u(x,y) = 0. (6.34)

The vectorek is a unit vector directed along thek − th coordinate axis,k = 1, 2, 3.
The subscriptx means that differentiation is performed with respect to thespatial
coordinatex. The pointy is an arbitrary point inR3. Physically the equations (6.34)
describe the velocity and pressure due to a unit point sourcein the ek-direction
located at the pointy. Using the requirements

uk
j (x,y) = O

(
1

‖x− y‖

)

and qk(x,y) = o (1) , for ‖x‖ → ∞, (6.35)

it can be seen that the solution of (6.34) is given by

uk
j (x,y) = − 1

8π

[

δjk
1

‖x− y‖ +
(xj − yj)(xk − yk)

‖x− y‖3

]

,

qk(x,y) = − 1

4π

xk − yk

‖x− y‖3
. (6.36)

This solution is called thefundamental singular solutionof the Stokes equations. The
functions also satisfy the adjoint system,

∇2
yu

k(x,y) + ∇yq
k(x,y) = δ(x − y)ek,

∇y.u
k(x,y) = 0. (6.37)

To proceed to a boundary integral formulation we require theGreen’s identity for
the Stokes equations. Let u andv be two solenoidal vector fields, andp andq two
sufficiently smooth scalar functions. Then the following integral identity holds [65]

∫

Ω

[(

∇2vi −
∂p

∂xi

)

ui −
(

∇2ui +
∂q

∂xi

)

vi

]

dΩ =

∫

S
[σij(p,v)uinj − σij(−q,u)vinj] dS. (6.38)

Note that the stress tensorσ(q,u) is equal to

σij(q,u) = −qδij +

(
∂ui

∂xj
+
∂uj

∂xi

)

. (6.39)
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For the functionsu and q in the Green’s identity we substitute the fundamental
solutionsuk(x,y) and qk(x,y) and we consider these as functions ofy, thus
satisfying the adjoint system (6.37). Furthermore we letv andp be the solutions of
the Stokes equations described in the previous section. Then we obtain the following
integral identity,

vk(x) =

∫

S
σij(−qk,uk)yvinjdSy −

∫

S
σij(p,v)uk

i njdSy, x ∈ Ω, (6.40)

for k = 1, 2, 3. We substitute the fundamental solution pair(qk,uk) in the expression
for σ, to obtain

σij(−qk,uk)y = − 3

4π

(xi − yi)(xj − yj)(xk − yk)

‖x− y‖4
. (6.41)

We introduce a new variableb,

b := σ(p,v)n, (6.42)

which represents the normal stress at the surface. Under theassumption that the
surface ofΩ is smooth, we letx approach the surface. Then it can be deduced that

cijvj(x) +

∫

S
qij(x,y)vj(y)dSy =

∫

S
uij(x,y)bj(y)dSy, i = 1, 2, 3. (6.43)

Here the kernelsqij anduij are defined as

qij(x,y) :=
3

4π

(xi − yi)(xj − yj)(xk − yk)nk

‖x− y‖5

uij(x,y) :=
1

8π

[

δij
1

‖x− y‖ +
(xi − yi)(xj − yj)

‖x− y‖3

]

. (6.44)

The coefficientcij depends onx according to [65]

cij :=







δij x ∈ Ω,
1
2δij x ∈ ∂Ω,
0 elsewhere.

(6.45)

From now on we choosex ∈ ∂Ω, which givescij = 1
2δij . We introduce the integral

operatorsG andH,

(Gφ)i :=

∫

S

uij(x,y)φj(y)dSy,

(Hψ)i :=

∫

S

qij(x,y)ψj(y)dSy. (6.46)
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These operators are called thesingle and double layer operatorfor the Stokes flow.
With these operators the boundary integral equation (6.43)is written as steno

(1

2
I + H

)
v = Gb. (6.47)

This boundary integral equation expresses the relation between the velocityv at the
surface of the fluid and the normal stressb at the surface.

The double layer operatorH admits several eigenfunctions with eigenvalue zero.
Hence the Neumann problem in whichb is prescribed andv unknown at the whole
boundary is not uniquely solvable. To overcome this non-uniqueness we follow
the procedure of deflating the operatorH [94, p. 32]. The eigenfunctions ofH
correspond to the six rigid body motions ofΩ, including three translations and three
rotations,

ϕm(x) := em, m = 1, 2, 3,

ϕ4(x) := x3e
2 − x2e

3,

ϕ5(x) := −x3e
1 + x1e

3,

ϕ6(x) := x2e
1 − x1e

2. (6.48)

Hereem is the unit vector in them-th direction. These rigid body motions are still
in dimensionfull notation. We introduce the total surface area|S|, the center of mass
xt and the moment of inertiaI by

|S| :=

∫

S
dS, xt :=

1

|S|

∫

S
xdS, I :=

∫

S
‖x− xt‖2dS. (6.49)

The dimensionless rigid body motions are given by

ϕ̂m :=
ϕm

√

|S|
, m = 1, 2, 3,

ϕ̂4 :=
1√
I

[
(x3 − xt

3)ϕ
2 − (x2 − xt

2)ϕ
3
]
,

ϕ̂5 :=
1√
I

[
−(x3 − xt

3)ϕ
1 + (x1 − xt

1)ϕ
3
]
,

ϕ̂6 :=
1√
I

[
(x2 − xt

2)ϕ
1 − (x1 − xt

1)ϕ
2
]
. (6.50)

We define six projection operatorsPm by

Pm := ϕ̂m(·, ϕ̂m), m = 1, . . . , 6. (6.51)

We introduce the deflated form of the operatorH,

H + P := H +

6∑

m=1

Pm. (6.52)
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We replace the operatorH by the deflated operatorH + P in the boundary integral
equation and obtain

(
1

2
I + H + P)v = Gb. (6.53)

This boundary integral equation is uniquely solvable. The operatorP can also be
written as

(Pψ)i =

∫

S

ϕij(x,y)ψj(y)dSy, (6.54)

where the kernelϕij is given by

ϕij :=
6∑

m=1

ϕm
i (x)ϕm

j (y). (6.55)

Note that deflating the operatorH is only necessary for pure Neumann problems, i.e.
whenb is given at the whole boundary. For many applications in thisthesis we have
problems with mixed boundary conditions and we do not need todeflate the operator.

6.4 Numerical solution

In this section we transform the boundary integral equations (6.53) to a linear system
of algebraic equations. The surfaceS is approximated byK linear triangular
elements. Each element consists of three nodesx1, x2, x3, which are located at
the corners of the triangle. The total number of nodes is denoted byN . We introduce
three linear shape functions,

φ1(ξ1, ξ2) := 1 − ξ1 − ξ2,

φ2(ξ1, ξ2) := ξ1,

φ3(ξ1, ξ2) := ξ2, (6.56)

where0 ≤ ξ1, ξ2 ≤ 1 andξ1 + ξ2 ≤ 1. Consider thek-th elementSk with nodesx1,
x2 andx3. The elementSk is parameterized by

y = y(ξ1, ξ2) = φ1x
1 + φ2x

2 + φ3x
3. (6.57)

At each elementSk the functionsv andb are linearly approximated with the same
shape functions,

v(y) = φ1v
1 + φ2v

2 + φ3v
3,

b(y) = φ1b
1 + φ2b

2 + φ3b
3. (6.58)



Section 6.4 Numerical solution 107

Herevs := v(xs) is the velocity at the nodexs andbs := b(xs) is the normal
stress at the nodexs. We approximate the surface integrals overS in (6.53) by a
sum of integrals over the elementsSk, and substitute the approximations forv andb,
yielding

1

2
vi(x) +

K∑

k=1

∫

Sk

qij(x,y)
(

φ1v
1
j + φ2v

2
j + φ3v

3
j

)

dSy

+
K∑

k=1

∫

Sk

ϕij(x,y)
(

φ1v
1
j + φ2v

2
j + φ3v

3
j

)

dSy

=

K∑

k=1

∫

Sk

uij(x,y)
(

φ1b
1
j + φ2b

2
j + φ3b

3
j

)

dSy, x ∈ S, (6.59)

for i = 1, 2, 3. In these three equations there are3N velocity coefficients and3N
normal stress coeffcients. At each node either the velocityor the normal stress
is prescribed, leaving3N unknown coefficients. Hence we need3N equations
to calculate these remaining3N coefficients. By substitutingx = xp in (6.59),
p = 1, . . . , N , we obtain the nessecary3N equations.

Next we construct two coefficient vectors,

v :=
[
v1
1 , v

1
2 , v

1
3 , . . . , v

N
1 , v

N
2 , v

N
3

]T
,

b :=
[
b11, b

1
2, b

1
3, . . . , b

N
1 , b

N
2 , b

N
3

]T
. (6.60)

This allows us to write (6.59) in a matrix-vector form,

(H + Φ)v = Gb. (6.61)

To compute the matricesH, Φ andG, we have to evaluate integrals of the form
∫

Sk

qij(x
p,y)φrdSy,

∫

Sk

ϕij(x
p,y)φrdSy,

∫

Sk

uij(x
p,y)φrdSy. (6.62)

The integrals can be evaluated by using a Gaussian quadrature scheme, but special
care has to be taken of the third type. When the nodexp is in the surface element
Sk the integrand is singular. In this case we perform an adaptive Gauss quadrature
scheme to approximate the integral. The first integral also becomes singular when
xp is in the surface elementSk. However in this case the integral can be calculated
analytically and it can be shown that its contribution yields zero.

In the case of mixed boundary conditions, we either know the velocity
coefficients at a node or the normal stress coefficients. Hence in (6.61) some of
the unknowns are in the vectorb at the right-hand side and some of the knowns are
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in the vectorv at the left-hand side. By moving the known coefficients to theright
and the unknown coefficients to the left we arrive at the standard form linear system

Ax = f . (6.63)

Here x contains all unknown coefficients andf is a vector with the prescribed
boundary data.

WhenS3 6= {∅}, i.e. a slip condition at the wall of the mould, there are nodes at
which both the velocity and normal stress coefficients are unknown, though related
via the slip conditions (6.27). Lettr, r = 1, 2, be the two tangential vectors at the
wall at such a nodex ∈ S3. Sincev.n = 0 atx and{n, t1, t2} forms a local basis
of R

3, we may write

v(x) = a1t
1(x) + a2t

2(x), a1, a2 ∈ R. (6.64)

Substitution into(b+ βmv).t
r = 0 yieldsar = −(b.tr)/βm.

In this way we expressv in terms ofb. In the boundary integral equations we can
replacev by this expression and thus eliminatev. We then solve the linear system,
which is again of the formAx = f . The solution yieldsb atx and we reconstructv
atx with the expression (6.64).

The matrixA is a dense matrix and the linear system can be solved by using an
LU-decomposition technique. Due to the dense nature of the matrix, this may become
costly, especially when the size of the matrix is large. However the BEM reduces
the dimension of the problem by one, as it involves variablesat the surface only.
Hence compared to finite element methods or finite volume methods, the number
of unknowns is relatively low. Henceforth the matrixA is also not as large as in
other numerical methods. In our numerical tests the number of nodesN ranges from
750 to 1500. This leads to matrices of at most4500 × 4500 entries. It turns out
that computing these entries consumes most of the computation time, approximately
90%. Solving the linear system consumes only5% of the time.

6.5 Time integration and post-processing

The movement of the boundary surface of the fluid domain is described by the
velocity fieldv(x, t) that is the outcome of the Stokes equations in Section 6.4. In
fact we calculate the velocity at a set ofN nodes at the boundary. To study the
evolution of the boundary we need to solve an ordinary differenial equation,

∂x

∂t
= v(x, t). (6.65)

At time t = t{n} we know the locations of the nodesx{n} and the velocity at these
nodesv(x{n}, t{n}) =: v{n}. We do not have any information of the nodes or
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velocity in the future. Therefore we cannot make use of implicite time integration
schemes to solve (6.65).

An option is to use anEuler forward scheme, in which we approximate the
locations of the nodes at the next time levelt{n+1} by

x{n+1} = x{n} + ∆tv{n}, (6.66)

where ∆t = t{n+1} − t{n}. However this scheme is only first order accurate.
Another option is to use a modified version ofHeun’s method, which is also called
the improved Euler method. In this method the location of the node at time level
t{n+1} is approximated by

x{n+1} = x{n} +
1

2
∆t

[

v{n} + v(x{n} + ∆tv{n})
]

. (6.67)

This method is known to be second order accurate [11]. However for this method we
need the velocityv at the next time levelt{n+1} in the new locationx{n+1} of the
node. As we remarked before we do not have information of future time levels. To
get around this problem we first predict the location of the node at the next time level
using an Euler forward step (6.66). For this predicted nodex{n+1} we again solve
the Stokes equations and we obtain the velocity in this node at time t{n+1}. Then we
use Heun’s method (6.67) to correct our prediction ofx{n+1}.

In the procedure to numerically solve the Stokes equations as described in this
chapter, two types of errors are made. First we make a discretisation error with
the BEM. As we use linear elements this error isO(h2), whereh is the (maximal)
element size. Second we make an error in the time integration, which isO(∆t)
for Euler forward, andO(∆t2) for Heun’s method. We have to realize that to
decrease the total error we have to decrease both the discretisation error and the
time integration error. Therefore it does not help to use high order time integration
schemes when the total error is dominated by the discretisation error. In our
numerical tests the latter is the case. The discretisation error is larger than the time
integration error and in that view it suffices to use Euler forward for time integration.

After we obtain the solution of the Stokes equations with theBEM there are
several ways to improve the quality of the solution. First weperform velocity
smoothing on the velocity field that is the outcome of the BEM.This smoothing
step takes away irregularities in the velocity field that arenot physical. The amount
of velocity smoothing must be moderate, as it directly affects the solution of the
Stokes equations. In Appendix C we give a more detailed description of the velocity
smoothing process.

Another type of smoothing is Laplacian smoothing, which affects the
discretisation of the fluid surface. Again it takes away irregularities, yielding a
smoother surface. Appendix C introduces the Laplacian smoothing technique.
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When we study the blowing problem for glass, the flow is restricted to the interior
of the mould. In all our numerical examples this mould is given by a parametric
representation. In Appendix B we develop a strategy to make sure that the fluid
remains inside the mould, i.e. nodes of the discretised fluidsurface cannot penetrate
the wall of the mould. The basic idea is that, in first instance, these nodes are allowed
to cross the wall. At the end of each time step we verify if any node has moved
through the wall. If so, we determine a new location for such anode, and also account
for the volume change caused by this relocation.

As the fluid surface expands in time, the triangular elementsthat constitute the
discretised surface increase in size. This may lead to a veryirregular and coarse
surface discretisation. To avoid this we measure the lengths of the edges of the
elements. If such an edge becomes larger than a certain tolerance value, the edge
is subdivided into two new edges. A new node is introduced at the center of the
subdivided edge, and the two elements sharing the edge are subdivided into four
smaller elements. In this way the number of nodes and boundary elements increase
in time, but it ensures the surface to remain smooth and regular.



Chapter 7

Results

This chapter shows numerical results from the mathematicalmodel that was
developed in the previous chapter. In Section 7.1 we presentseveral numerical
examples for the glass blowing problem. Section 7.2 shows examples for another
type of problem, the evolution of viscous drops of fluid due tosurface tension. In
both sections all computations are performed in three dimensions, without making
any assumptions on symmetry of the domains. We conclude thischapter with a
parameter analysis in Section 7.3.

7.1 Glass blowing

The set-up of the blowing process of glass bottles and jars isschematically depicted
in Figure 7.1. A preform of hot liquid glass, often called aparison, is positioned
into a mould. Pressurized air flows into the mould causing theglass to move deeper
into the mould. Eventually the whole mould is covered by a thin layer of glass. We
simulate this blowing process with the BEM model that we developed in the previous
chapter. We take several shapes for the mould and the parisonand study the flow of
the glass in time. In all simulations we assume that the top ofthe glass (S2) is fixed
to the mould and cannot move.

The material properties of glass and the process parametersof the blowing
problem can be found in Table 6.1. With these properties the dimensionless numbers
that appear in the model have the following values,

α = 0.006, β = 0.001. (7.1)

This implies that the effect of gravity and surface tension is small compared to the
effect of the inflow of pressurized air. Ideally the value of the dimensionless friction
coefficientβm is determined experimentally. Unfortunately these experiments are

111
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Figure 7.1: The parison is suspended in the mould, attached atS2. Pressurized air flows
into the mould from above.

very complex to perform and we are not aware of any such experiments reported in
literature. Therefore we perform a number of numerical tests to determine realistic
values ofβm, see Example 7.6.

Example 7.1

The first simulation concerns a parison without mould. To keep a reference point,
we still assume that the parison is fixed at the top. As there isno mould the glass
is free to move in all directions. In Figure 7.2 we show six snapshots of the parison
as it expands and Figure 7.3 shows a cross-sectional view aty = 0. The snapshots
should be viewed from left to right, from top to bottom. The bulk of the glass is
at the bottom of the parison, while the thinnest parts of the parison are at the sides.
It is at these parts where the fluid flow is strong, while the bottom of the parison
remains almost unchanged. Although the initial parison is rotationally symmetric,
small a-symmetries appear during the simulation. This is a consequence of the fact
that the surface mesh is not rotationally symmetric. If we decrease the mesh size the
parison will become almost rotationally symmetric.

In principle this simulation can be continued for a long time. The glass will
expand further, but numerical problems start to arise. First the layer of glass
becomes very thin and special care has to be taken to ensure that the inner and outer
surface remain separated by a small distance. Another reason to stop this particular
simulation after some time is the increasing number of boundary elements. To ensure
smooth surfaces the number of nodes and elements has to be increased significantly
for large expansions of the glass. �
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Example 7.2

The next simulation shown in Figure 7.4 and 7.5 concerns a parison that is suspended
in a mould. The air that flows in in from above causes the glass to take the shape of
the mould. When the glass touches the wall of the mould, it remains connected to the
mould, though it is allowed to slip along the mould. In this example we takeβm = 1.
The mould has a cylindrical shape with rounded corners. The reason to choose for
rounded corners is twofold. First, in practice the corners of a bottle or jar are never
90-degree corners. Second, it turns out that it is very hard to make the glass fill the
whole mould if the corners are straight. Even with rounded corners we still need to
refine the mesh sufficiently to fill the corners with glass.

The cross-sectional view in Figure 7.5 shows that we get sharp corners at the top
of the parison where the surface partsS1 andS2 touch. This is a direct consequence
of the choice to keep the glass fixed atS2, while it is allowed to move atS1. In reality
these sharp corners do not appear. �

Example 7.3

Figure 7.6 and 7.7 show a simulation with a slightly more advanced mould. The
lower part of the mould has a smaller width than the upper partof the mould. Again
the corners are rounded and the glass is allowed to slip alongthe wall of the mould.
In the previous two simulations the only driving force was the pressure of the air that
is blown into the mould from above. In reality, in first instance the glass is subjected
to gravity only. The glass will sag to the bottom of the mould and when it almost
touches the bottom, air starts to blow into the mould. The simulation in Figure 7.6
and 7.7 distinguishes these two stages. The first three snapshots correspond to the
sagging stage while the last three snapshots correspond to the blowing stage. �

Example 7.4

The simulation that is presented in Figure 7.8 and 7.9 involves a parison and a mould
that are not rotationally symmetric. We opt for square shapes with rounded corners.
Hence the parison and mould are symmetric in the planesx = 0 andy = 0. However
these symmetries are not exploited in the computations. Again we consider the two
stages that occur in the production process: sagging and blowing. The first three
snapshots correspond to the sagging stage while the last three snapshots correspond
to the blowing phase. In this case it is clearly visible that the glass moves only in
vertical directionduring the sagging stage. In the blowingstage the glass also moves
in radial direction. �
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Figure 7.2: 3D Snapshots of the glass as it expands due to the air blowing in from above.
For this simulation no mould is present, so the glass can expand freely in all directions. The
only restriction is that the glass is fixed at the top of the parison.
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Figure 7.3: Cross-sectional view of Figure 7.2 aty = 0.
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Figure 7.4: 3D Snapshots of the glass as it expands due to the air blowing in from above.
The mould has a cylindrical shape with rounded corners. The glass is allowed to slip along
the wall.
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Figure 7.5: Cross-sectional view of Figure 7.4 aty = 0.
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Figure 7.6: During the first three snapshots the glass is sagging to the bottom of the mould.
During the last three snapshots air is blowing into the mouldfrom above. The glass is allowed
to slip along the wall of the moud.
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Figure 7.7: Cross-sectional view of Figure 7.6 aty = 0.
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Figure 7.8: A square parison with rounded corners and a square mould withrounded
corners. During the first three snapshots the glass is sagging to the bottom of the mould.
During the last three snapshots air is blowing into the mouldfrom above. The glass is not
allowed to slip along the wall.
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Figure 7.10: Comparison between a rotationally symmetric parison and a parison with a
dent. The parisons are shown at three different time levels:t = 0.0, t = 1.0 andt = tend.

Example 7.5

In Figure 7.10 we show the cross-sections of two parisons that are blown into a
mould. The parison at the left-hand side, which we call parison 1, is perfectly
rotationally symmetric, while the parison at the right-hand side, which we call
parison 2, has a dent in the initial shape (at the right-hand side of the parison). Let
tend represent the (dimensionless) time level at which the glassproduct is finished,
i.e. when the glass more or less covers the wall of the whole mould.

We compare the evolution of the two parisons at three different time levels:
t = 0.0, t = 1.0 and t = tend. The value oftend differs for the two simulations.
For parison 1 we findtend = 3.5 while parison 2 hastend = 4.5. Parison 2 takes
approximately28.9% longer to finish.

The dent is still present in the final product. The glass layerat the lower right
corner of parison 2 is thinner than the glass layer at the samelocation of parison 1.
Moreover the the glass layer at the lower left corner of parison 2 is thicker than the
glass layer at the same location of parison 1. This is caused by the fact that the thin
parts of the glass are easier to move than the thick parts. Hence the flow at the dent
is relatively large. Since the total amount of glass needs tostay constant, the flow at
other parts is relatively small. This is exactly what happens at the lower left corner
of parison 1. �
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7.2 Curvature driven flow

In the absence of external forces, droplets of viscous fluid tend to evolve to a perfect
sphere, regardless of the initial shape of the fluid. This is explained as follows. A
molecule in the interior of the fluid is completely surrounded by other molecules. It
experiences an attraction from all neighbouring molecules, which sums to zero. On
the other hand, a molecule that is at the surface of the fluid experiences a net inward
attraction. When the curvature of a convex surface is large,the inward attraction
is large and when the curvature is small also the inward attraction is small. This
introduces a potential energy of the fluid, which may be transformed to kinetic energy.
For a spherically shaped fluid, the curvature is equal at eachpoint of the surface.
Hence the inward attraction is the same at each point. The fluid is in an equilibrium
state and the potential energy will not be transformed to kinetic energy. In this section
we show that the BEM model developed in Chapter 6 is also applicable for this type
of evolution processes. Related work on two-dimensional fluid domains can be found
in literature [78, 79, 94], in which both the direct and the indirect formulation of the
BEM are used.

In this section we illustrate the evolution of viscous dropsby looking at a number
of fluid shapes that evolve to a sphere due to the surface tension. Using the notation
from Chapter 6, we haveS1 = S2 = S3 = {∅} andS ≡ S0, i.e. the fluid surface is a
free surface. The boundary condition for this surface reads

σn = −(αz + βκ)n. (7.2)

Since we do not want to take gravitational effects into account we takeα = 0, and as
the only driving force of the flow is the surface tension, we may setβ = 1.

Note that the choiceS ≡ S0 implies that we have to solve a Neumann problem.
Hence we use the deflated form of the boundary integral operator H, as is described
in Section 6.3.

Example 7.6

In Figure 7.11 we see a beam-shaped volume of fluid evolving toa sphere. Figure
7.13(a) shows a cross-sectional view aty = 0 of the same fluid. The dimensions of
the beam are2, 2 and1. The corners of the initial beam are rounded, as a viscous fluid
will never have straight corners. For this particular simulation the initial number of
nodes at the surface isN = 500 and the number of triangular elements isK = 996.
The initial volume of the beam is20.6465 and the volume of the final sphere to which
it evolves is20.6355. Hence we have a volume loss of less than0.1%. Since the fluid
approaches a sphere we can compute the radius that such a volume requires to find
r = 1.702. The average radius of the nodes at the final surface is1.714 with standard
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Figure 7.11: A beam with sizes2, 2 and1 evolves to a sphere.
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Figure 7.12: An ellipse with semi-axes of length3, 2 and1 evolves to a sphere.
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Figure 7.13: Cross-sectional views of Figure 7.11 and 7.12 aty = 0.
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Figure 7.14: Volume change of the ellipsoid while evolving to a sphere.

deviation0.025, which implies that the final surface is indeed a sphere with almost
the appropriate radius. During the simulation we apply a remeshing technique that
assures that all edges of the boundary elements are smaller than0.39. This leads to a
final discretisation withN = 684 nodes andK = 1364 elements. �

Example 7.7

In the next example we watch an ellipsoidal volume of fluid evolve to a sphere
(Figures 7.13(b) and 7.12). The initial ellipsoid has semi-axes of length3, 2 and1
and hasN = 500 nodes andK = 996 elements at its surface. The volume of the
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initial ellipse is equal to24.56 while the volume of the final sphere is equal to24.54.
Hence the volume change is0.08%. During the simulation we apply a remeshing
technique that assures that all edges of the boundary elements are smaller than0.4.
This leads to a final discretisation withN = 666 nodes andK = 1328 elements. In
Figure 7.14 we show the relative volume change of the ellipsoid during its evolution
to a sphere. We observe that the volume first increases while later on it decreases
again. �

In Section 6.5 we mentioned two types of smoothing techniques to improve
the quality of the BEM solution. We use Example 7.6 to study the effect of these
smoothing techniques and to determine optimal settings forthe smoothing.

The first technique is Laplacian smoothing, see Appendix C.1. This technique
smooths the discretised surface and involves two parameters; the number of iterations
N1 and the weightw1. The second technique is the smoothing of a vector field at a
surface, see Appendix C.3. This technique smooths the velocity field that is the
solution of the Stokes equations. Involved are also two parameters; the number of
iterationsN2 and the weightw2.

Similar to Example 7.6 we let a beam-shaped volume of fluid evolve to a sphere.
We vary the smoothing parameters and determine for which values the final fluid
approximates a sphere optimally.

The initial beam-shaped fluid has a volume of20.6. When the radius of the final
sphere is equal toR := 1.702, the sphere volume is also20.6. This gives us a criterion
to determine whether the discretised surface approximatesa sphere accurately. We
compute the distance of each node at the surface to the geometric center of the fluid.
The average of these values should approximate1.702. We also compute the standard
deviation of these values. If the standard deviation is low,the fluid is close to a sphere.
In this way we can study the effect of the smoothing techniques on the final geometry.

In the first test we choosew1 = w2 = 0.4 and vary the number of iterations.
The results are shown in Table 7.1(a). We see that the averageradius is close to the
exact value in each case. The standard deviation is minimal forN1 = N2 = 3. In the
second test we chooseN1 = N2 = 3, i.e. the optimal choice from the previous test,
and vary the weightsw1 andw2. The results are shown in Table 7.1(b). We observe
that the best results are obtained whenw1 = w2 = 0.1. In this case the radius is
closest to the exact radius and the standard deviation is minimal.

Until now we chose the same number of iterations and weights for both
smoothing techniques. In the next test we choosew1 = w2 = 0.1 and we take
several combinations of numbers of iterationsN1 andN2. The results are shown in
Table 7.2(a). Clearly the effect of the velocity smoothing is smaller than the effect of
Laplacian smoothing.

In the last test we do not perform velocity smoothing (N2 = 0) and we choose
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N1 N2 r̄ std(r)

0 0 1.7100 0.0550
1 1 1.7080 0.0162
3 3 1.7093 0.0139
6 6 1.7074 0.0213

w1 w2 r̄ std(r)

0.1 0.1 1.7081 0.0110
0.4 0.4 1.7093 0.0139
0.7 0.7 1.7096 0.0154
1.0 1.0 1.7124 0.0242

Table 7.1: The mean radius and standard deviation of all nodes at the surface of the sphere
for (a) w1 = w2 = 0.4 and(b) N1 = N2 = 3.

N1 N2 r̄ std(r)

3 3 1.7090 0.0124
1 3 1.7131 0.0145
3 1 1.7081 0.0114
3 0 1.7081 0.0105
6 0 1.7085 0.0166

w1 r̄ std(r)

0.1 1.7081 0.0105
0.2 1.7078 0.0169
0.3 1.7071 0.0097
0.4 1.7089 0.0180
0.6 1.7115 0.0218

Table 7.2: The mean radius and standard deviation of all nodes at the surface of the sphere
for (a) w1 = w2 = 0.1 and(b) N1 = 3 andN2 = 0.

N1 = 3. We let the weightw1 vary. The results are shown in Table 7.2(b). We see
that the best results are obtained whenw1 = 0.3. In this case the average radius is
very close to the exact radius and the standard deviation is minimal.

The main conclusions from these tests on smoothing techniques are:

• Velocity smoothing has less effect than Laplacian smoothing;

• The optimal number of iterations for Laplacian smoothing isN1 = 3;

• The optimal weight for Laplacian smoothing isw1 = 0.3.

In all simulations presented in this chapter we perform the smoothing techniques with
the settings equal to or close to the optimal settings listedabove.

7.3 Parameter analysis

In this section we investigate the role of several model parameters for the glass
blowing problem. To this end we simulate the flow of a cup-shaped amount of glass.
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Example 7.8

In the first example we let gravity act on the glass, which willcause the glass to sag
downward. We study the significance of the surface tension during this process. The
effect of surface tension is represented by the value of the dimensionless numberβ,
which involves the surface tension. As gravity is the driving force we setα = 1. The
values ofβ that we use in this example lie in the range of0.0 to 0.4. If β = 0.0, then
the glass does not have surface tension. A large positive value ofβ implies a high
surface tension.

We let the glass sag downwards for a fixed amount of time and plot the resulting
shape in Figure 7.15. We do this for several values ofβ. The left pane of the figure
gives a cross-section of the glass, while the right pane zooms in on the lowest part of
this cross-section. Several lines are plotted, each representing a specific value ofβ.
In the left pane, the various shapes, corresponding to the various values ofβ, more
or less coincide. In the right pane we are able to distinguishthe various shapes. We
observe that the glass flow has moved downward the furthest for β = 0.0, while for
large values ofβ the glass has not moved very far. Hence the surface tension slows
down the flow of the glass.

Table 7.3 gives the height of the lowest point of the glass surface for several
values ofβ. We compare these heights with the height forβ = 0.0. We observe that,
for β = 1.0, the glass surface is more than2% higher than forβ = 0.0. Hence the
surface tension plays a small role in the case of gravity driven flow. Therefore we
include surface tension in all numerical simulations that cover the sagging stage.�

β zmin difference (%)
0.0 −0.8970 –
0.1 −0.8908 +0.69
0.2 −0.8858 +1.25
0.3 −0.8813 +1.75
0.4 −0.8765 +2.29

Table 7.3: Thez-coordinate of the lowest node after sagging for several values of the surface
tensionβ.

Example 7.9

In the next example we investigate the significance of the surface tension during the
blowing stage. Hence the glass does not sag due to gravity in this case, but it flows
due to a pressure difference between upper and lower layer ofthe glass. In this case
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Figure 7.15: The effect of the surface tension on the flow of the glass compared to the effect
of gravity. High values ofβ represent strong surface tension. In the left pane a cross-section
of the glass is shown, the right pane zooms in on the lower partof this cross-section.
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Figure 7.16: The effect of the surface tension on the flow of the glass compared to the effect
of pressure. High values ofβ represent strong surface tension. In the left pane a cross-section
of the glass is shown, the right pane zooms in on the lowest part of this cross-section.

we setα = 6.45 · 10−3, which indicates that the contribution of the gravity is small
compared to pressure. The values ofβ range from0.0 to 2.6 · 10−3. The left pane
of Figure 7.16 shows a cross-section of the glass, while the right pane zooms in on
the lowest part of this cross-section. We see that the various shapes that correspond
to various values ofβ are almost similar. This shows that the surface tension is
of no importance during the blowing stage. The flow is dominated by the pressure
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Figure 7.17: The effect of the gravity on the flow of the glass compared to the effect of
pressure. In the left pane a cross-section of the glass is shown, the right pane zooms in on the
lowest part of this cross-section.

difference. Therefore we do not need to include surface tension in the numerical
simulations for the blowing stage. �

Example 7.10

In this example we investigate whether we may also neglect gravity during the
blowing stage. Figure 7.17 shows the shape of the glass in theblowing stage after
some time. Two shapes are plotted: one shape corresponds to the simulation in which
gravity is included, and the other shape corresponds to the simulation without gravity.
The left pane gives a cross-section of the glass but we see no differences between the
two shapes. In the right pane we zoom in on the lower part of thecross-section. Here
we see that in the simulation where gravity is included, the glass moved downward a
bit further than in the simulation without gravity. Still the differences are very small
and we may conclude that gravity is negligible during the blowing stage. �

Little is known about the friction parameterβm. To the author’s knowledge there
are no references in literature to experiments in which the friction parameters for
glass towards metals are determined. Therefore we perform aseries of simulations
in which we varyβm. This shows how the flow of the glass depends on the friction
parameter and helps us to determine realistic values ofβm.

Example 7.11

Figure 7.18 shows the new parison after a fixed number of time steps for several
values ofβm. Both the mould and initial parison have a rotationally symmetric
shape. In this simulation gravity is the only driving force for the flow of the glass.
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Figure 7.18: Deformation of the glass after a fixed number of time steps fordifferent values
of βm.

Theoretically, forβm = ∞ the friction between glass and mould is infinitely large
and the glass does not slip at all along the wall of the mould; for βm = 0 there is no
friction, and the glass can flow freely along the wall of the mould. We observe that for
βm = 5 the glass has slipped a little along the wall of the mould. This slip becomes
larger if the friction parameter is lowered further. Forβm = 2 andβm = 1.5 we see
that the glass that is in contact with the wall moves faster downward than the glass
that does not touch the wall. Hence these values ofβm are not realistic. Appropriate
choices forβm lie in the range of3 to∞. Note that we use the dimensionless friction
parameter here, which depends on the length scale and the viscosity. Hence for
examples that have other characteristic lengths and viscosities, suitable values for
βm may be slightly different than the values that we find for thisexample. �

Example 7.12

Example 7.11 shows that a minimal value for the friction parameter isβm = 3, based
on observations of intermediate shapes during sagging. In the current example we
elaborate a bit more on values ofβm that are in the interval[5,∞). For several
values ofβm we simulate the blowing stage and plot the final shapes in Figure 7.19.
We observe that the shapes vary significantly.

In Table 7.4 we give the height of the lowest point of the glasssurface for several



Section 7.3 Parameter analysis 133

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

x

 

 

β
m
 = ∞

β
m
 = 30

β
m
 = 15

β
m
 = 10

β
m
 = 5

Figure 7.19: The effect of friction on the flow of the glass compared to the effect of pressure.
High values ofβm represent much friction.

βm zmin difference (%)
∞ −0.90 –
30 −1.05 −6
15 −1.09 −9
10 −1.12 −12
5 −1.17 −18

Table 7.4: Thez-coordinate of the lowest node after the blowing stage for several values of
the friction parameterβm.

values ofβm. We compare these heights with the height forβm = 0. We see that
βm = 5 gives a glass surface that is18% lower than the surface forβm = ∞. Hence
the friction between glass and mould is very important and cannot be neglected. �



Appendix A

Curvature approximation

This appendix describes the approximation of curvature parameters of a discretised
surface. When a surface is given by a parametric representation these curvature
parameters can be calculated analytically. However in manynumerical applications
the surface is a discretised surface, consisting of a large number of triangular elements
and nodes. For such discretised surfaces it is not so straightforward to compute
curvature parameters. However, there exists a number of strategies to approximate
curvature parameters, of which theparaboloid fit methodappears to be the most
accurate one [89]. We use a similar method in which abicubic polynomial is fitted
through data points.

Assume that a surfaceS is uniquely described byz = f(x, y), where(x, y) is in
a closed and bounded setD ⊂ R

2. TheGaussian curvatureof the surface at a point
(x, y) ∈ D is defined as

K :=
fxxfyy − f2

xy

(1 + f2
x + f2

y )2

∣
∣
∣
(x,y)

, (A.1)

and themean curvatureas

H :=
(1 + f2

x)fxx − 2fxfyfxy + (1 + f2
y )fyy

2(1 + f2
x + f2

y )3/2

∣
∣
∣
(x,y)

. (A.2)

Related to these two curvature parameters are theprincipal curvaturesκ1 andκ2.
They satisfy the relations

K = κ1κ2, H =
1

2
(κ1 + κ2). (A.3)

The principal curvatures can also be found as follows. Letx be a point at the
surfaceS and let a vertical plane intersect the surface in the pointx. The intersection
of the surface and the plane yields a curveC. By rotating the planes around the
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Figure A.1: The nodesv0 andv1, . . . ,vm are translated and rotated in such a way thatv is
in the origin and its normal vector points in the vertical direction.

vertical axis we get a set of curvesC. For each curve we calculate its the second
derivative at the pointx. The largest second derivative is the largest principal
curvatureκ1 and the smallest second derivative is the smallest principal curvatureκ2.

The triangulated surfaceT is described by a set of nodesxp at the surfaceS,
p = 1, . . . , N and a set of trianglesTk, k = 1, . . . ,K, each triangle defined by
three nodes. We want to approximate the curvature in each node xp using only the
information of the locations of neighbouring nodes. A node is a neighbour ofxp

if they share a triangleTk. The procedure to approximate the curvature goes as
follows. Let v0 be the node at which we want to approximate the curvature. Let
v1, . . . ,vm be them neighbouring nodes ofv0. First we translate and rotate the
nodesv0,v1, . . . ,vm in such a way thatv0 is translated to the origin and the normal
vector inv0 at the surface points in vertical direction, see Figure A.1.Note that a
translation and rotation of the surface does not affect the curvature parameters.
We fit a bicubic polynomialp(x, y) through the nodesv0,v1, . . . ,vm using a least
squares technique. The translation and rotation of the nodes guarantees that such a
polynomial exists. The polynomial provides a local parameterisation of the surface
of the formz = p(x, y). Hence we can use (A.1) and (A.2) to calculate the curvature
parameters in(x, y) = (0, 0) at the parametric surfac.

We describe the procedure above in more detail. Define the edge betweenv0 and
vi by ei := v0 − vi, i = 1, . . . ,m. Let thek-th triangle be given by the nodes
v0, vk1 andvk2. For the outward normal at this triangle we use the straightforward
definition,

nk :=
ek1 × ek2

‖ek1 × ek2‖ . (A.4)

The normal vector at the pointv0 can be defined in several ways. In each case the
normal vector atv0 is a weighted sum of the normals at the surrounding triangles.
For the weights several options are available.
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1. Average of normals at surrounding triangles,

n :=
1

m

m∑

k=1

nk. (A.5)

2. If Ak is the area of thek-th triangle,

n :=
m∑

k=1

1

Ak
nk. (A.6)

3. Define the weightθk by

cos θk :=
〈ek1 ,ek2〉
‖ek1‖‖ek2‖ , (A.7)

i.e. the angle between the two edges of a triangle that meet inv0, and

n :=

m∑

k=1

θkn
k. (A.8)

Later on we will demonstrate the effect of the different definitions of n on the
curvature approximation. It turns out that the last definition gives the most accurate
approximation.

We want to rotate the nodesv0,v1, . . . ,vm such that the normal inv0 points
in either positive or negative vertical direction. For thisgoal we define two rotation
matrices

R0 :=





cosα1 0 − sinα1

0 1 0
sinα1 0 cosα1



 , R1 :=





1 0 0
0 cosα2 − sinα2

0 sinα2 cosα2



 , (A.9)

which rotate the nodes over an angleα1 with respect to they-axis and over an angle
α2 with respect to thex-axis respectively. Writen = [n1, n2, n3]

T and denote the
rotation ofn overα1 by n1 := R0n. We writen1 = [n1

1, n
1
2, n

1
3]

T and denote the
rotation ofn1 overα2 byn2 := R1n

1. It can be shown thatn2 points in positive or
negativez-direction ifα1 andα2 are chosen as follows,

α1 =

{
arctan(n1

n3
) if n3 6= 0,

π
2 if n3 = 0,

α2 =

{

− arctan(
n1

2

n1
3

) if n1
3 6= 0,

π
2 if n1

3 = 0.
(A.10)



137

Having determined the appropriate rotation anglesα1 andα2, we can rotate all nodes
v0,v1, . . . ,vm, using the rotation matrixP := R1R0. This yields a set of new
nodes,

w̃0 := Pv0,

w̃i := Pvi, i = 1, . . . ,m. (A.11)

It may occur that at this stage the normal vector atw̃0 is pointing in the positive
z-direction. In that case we simply mirror all nodes with respect to the(x, y)-plane.
Thus the normal at̃w0 always point in the negativez-direction. Finally we translate
all nodes over the same distance such thatw̃0 is located in the origin. This yields the
following set of nodes,

w0 := w̃0 − w̃0 = 0,

wi := w̃i − w̃0, i = 1, . . . ,m. (A.12)

Let p(x, y) := a1x
2 + a2xy + a3y

2 + a4x
3 + a5y

3 be a bicubic polynomial. The
equationz = p(x, y) describes a 2D surface. We use a linear least squares technique
to find the polynomialp that gives the best fit of the nodesw0,w1, . . . ,wm. In
this way we create a parametric representation of a surface that locally approximates
the discretised surfaceS. The Gaussian and mean curvature at the nodev0 of the
discretised surface are obtained by evaluating (A.1) and (A.2) with f ≡ p at the
point (x, y) = (0, 0). They can be expressed in terms of the coefficients of the
polynomialp,

K = 4a1a3 − a2
2,

H = a1 + a3. (A.13)

We illustrate the procedure to approximate the curvature ofa discretised surface for
a sphere and an ellipsoid.

Example A.1

In Figure A.2(a) we show a unit sphere discretised withN = 704 nodes. It can be
shown that the unit sphere has a Gaussian curvature equal to1 in each point at the
surface. The color at the surface represents the value of theGaussian curvature as
approximated by the polynomial fit method. We observe that the approximation is
not equal to1 everywhere.

We repeat the curvature approximation for the unit sphere with other numbers of
nodesN . In Figure A.2(b) we show the maximum and mean error of the curvature
approximation as a function of number of nodesN . To our surprise the mean error
does not decrease if the number of nodes increases, i.e. the discretisation refines.
Moreover the maximal error is even increasing with the number of nodes. �
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(a) A discretised sphere withN = 704 nodes.
Color represents the Gaussian curvature.
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(b) The maximal and mean error in the curvature
approximation of a sphere as a function of number
of nodesN .

Figure A.2: Gaussian curvature approximation for a sphere. All neighbouring nodes are
used in the approximation.
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Figure A.3: Gaussian curvature approximation for a sphere. Only the fivenearest
neighbouring nodes are used in the approximation.
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Figure A.4: A sphere with a more regular discretisation. Color represents the Gaussian
curvature.

max nr. of neighbours max. error(%) mean error(%)

4 4.08 1.88

5 4.08 1.70

6 29.18 5.86

7 29.18 5.54

8 29.18 5.62

all 29.18 5.62

Table A.1: The maximal and mean error in the curvature approximation when a certain
number of neighbours is used for creating a polynomial fit.

Example A.2

The way to improve the curvature approximation is by using only the nearest
neighbours of a node when constructing the bicubic polynomial. In Figure A.3
we show the curvature approximation when at most five neighbours are used. We
see that the errors are much smaller and that the accuracy increases when we take
more nodes. We also investigate what number of neighbours gives the best curvature
approximation. In Table A.1 we give the maximal and mean error when a certain
number of neighbours is used. We see that for five neighbours the approximation is
the most accurate. �
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weight max. error(%) mean error(%)
1
m 57.08 7.35
1

Ak
36.27 5.94

θk 4.08 1.70

Table A.2: The maximal and mean error in the curvature approximation for a sphere for
each of the three definitions of the normal at a node. Number ofnodes isN = 704.

Example A.3

The accuracy of the curvature approximation also depends onthe discretisation of the
surface. In Figure A.3 we see that the largest errors are at the top of the sphere, where
we have a number of narrow triangular elements. In Figure A.4we show a sphere
with a more regular discretisation, i.e. all elements have approximately the same
shape and size. Although the accuracy is more or less the sameas for the sphere in
Figure A.3, the largest errors are not concentrated at one area. �

Example A.4

We mentioned that there are several possibilities to define the normal vector at a node.
In Table A.2 we show the maximal and mean error in the curvature approximation
for each of the three definitions. It is clear that the definition in which we use the
weightsθk results in a higher accuracy. �

Also for an ellipsoid the Gaussian curvature can be calculated explicitly. For a
point (x, y, z) at the surface of the ellipsoid the Gaussian curvature is given by

K =
1

a2b2c2

(
x2

a4
+
y2

b4
+
z2

c4

)−2

, (A.14)

wherea, b andc are the lengths of the semi-axes.

Example A.5

In Figure A.5(a) we show an ellipsoid where the semi-axes have length3, 2 and
1, discretised withN = 932 nodes. The color at the surface represents the
Gaussian curvature of the surface. We see that at the tipsx ± 3 the curvature is
maximal, which agrees with the maximal value of the analyticexpression forK. We
repeat the curvature approximation for the ellipsoid with other numbers of nodesN .
In Figure A.5(b) we give the maximal error and the mean error of the curvature
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(a) A discretised ellipsoid withN = 932 nodes.
Color represents the Gaussian curvature.
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approximation of the ellipsoid as a function of
number of nodesN .

Figure A.5: Gaussian curvature approximation for an ellipsoid. Only the five nearest
neighbouring nodes are used in the approximation.

approximation as a function ofN . We see that for a fine discretisation of the surface
(N > 550) the mean error is lower than5%. �



Appendix B

Contact problem

In this appendix we address the contact problem of a fluid witha wall. In many
mathematical models for fluid flow it is assumed that the fluid is already in contact
with a wall. At the contact area a slip or no-slip boundary condition is prescribed
that ensures that the fluid remains in contact with the wall. For the blowing problem
covered in this thesis the fluid may, in first instance, not yetbe in contact with the
wall. However as the fluid expands into the direction of the wall, at a certain moment
it will touch the wall. From that moment on, the fluid will stayconnected to the
wall at that specific point. Thus a fluid particle may at first instance be part of a free
boundary, while some time later it is fixed at a wall (althoughit may slide along the
wall in the case of a slip boundary condition).

For a flow that is computed numerically the touching of the wall is difficult to
implement. In boundary element methods, the fluid domain is described by a set of
nodes and elements at the surface of the domain. Moreover thetrajectory of a node
or fluid particle is only known at a discrete set of time points. Thus it may occur
that at timet = tn a fluid particle is not yet at the wall, while at timet = tn+1 the
particle has moved to the other side of the wall, see Figure B.1. Physically this is not
possible, but it is very difficult to “tell” the fluid particlethat it cannot move through
the wall.

When an explicit time integration method is used to track theflow of the fluid,
e.g. Euler forward, there is a simple way to avoid nodes moving through the wall.
One can find an intermediate timetn < t∗ < tn+1 such that the node that crossed
the wall lies exactly at the wall att = t∗. In this way we effectively decrease the
time step of the time integration method to a suitable size. In practice one should
thus verify all nodes att = tn+1 whether they moved through the wall. The node
that has moved through the wall the furthest determines the new time step size. The
drawback of the procedure is that the time steps can become very small, especially
when the number of nodes is large.
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t = t n t = t n + 1

Figure B.1: At timet = tn a fluid particle is at the left-hand side of a wall, while att = tn+1

the particle is at the right-hand side of the wall.

In the sequel we present an alternative method to prevent fluid particles from
moving through a wall for the 3D blowing problem. Let the surfaceS of a fluid
domain be represented byN nodes and a set of triangular elements, the nodes lying
at the corners of the triangles. LetW be a (possibley curved) surface representing the
wall, for which a parametric representation is given. At time t = tn the coordinates
of all nodes are given. With a numerical method the coordinates at timet = tn+1 are
computed. Assume that a node with coordinatesx has crossed the surfaceW during
the time interval(tn, tn+1). Letxold denote the old coordinates ofx at t = tn. The
strategy is to translatex over a distancedx, back into the direction ofxold, such that
x+ dx lies exactly atW .

The straight line fromxold to x can be parameterised by

y = y(ξ) = (1 − ξ)xold + ξx, 0 ≤ ξ ≤ 1. (B.1)

Using the parameterisation of the surfaceW it is possible to find the valueξ∗ such
that

y∗ := y(ξ∗) ∈W. (B.2)

The pointy∗ can be considered as the point atW where the fluid particle crossed
the wall during its travel fromxold to x. Therefore we relocate the nodex at the
pointy∗. Thus the node has moved over a distancedx given by

dx := x− y∗. (B.3)

By movingx toy∗ at the surfaceW we lose an amount of fluid, see Figure B.2(a).
This volume loss is unwanted and should be accounted for. First we need to exactly
compute the volume loss. To this end we need the coordinates of x, y∗ and their
neighbours. Denote the nodes that share an edge of a triangular element withx by
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(a) By movingx back to the surfaceW a certain
amount of fluid is lost (cross-sectional view).
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(b) The nodex is surrounded bym
triangular elements andm neighbouring
nodes.

Figure B.2: Procedure to relocatex at the wall.

x1, . . . ,xm, see Figure B.2(b). The volume lossdV due to the displacementdx is
given by [64]

dV =
1

6
〈dx,

m∑

j=1

ej × ej+1〉. (B.4)

Hereej is the edge connectingx andxj, whereem+1 ≡ e1.
For the blowing problem covered in this thesis the fluid domain is in fact a layer

of fluid. For this particular shape we develop a strategy to compensate the volume
loss. In Figure B.3(a) we give a schematic overview of the situation. The nodex is
located at the lower boundary of the fluid and is moved back to the pointy∗ atW .
Letw be the node at the upper boundary that is closest toy∗. We replacew over a
distancedw such that the volume loss is compensated. It is easy to see that dw has
to satisfy

−dV =
1

6
〈dw,

m∑

j=1

f j × f j+1〉, (B.5)

wheref j is the edge betweenw and itsj-th neighbour. Note that the vector quantity
dw has to satisfy a scalar equation. This means that we have the freedom to choose
the direction ofdw. We choosedw = w0n

w, wherenw is the outward normal atw.
If we substitute this into the condition fordw we find

w0 = − 6dV

〈nw,
∑m

j=1 f
j × f j+1〉 . (B.6)
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Figure B.3: One or multiple nodes are moved to compensate the volume loss.

In the procedure described above only one nodew is relocated to compensate the
volume loss caused by relocatingx to the wall. The procedure can be improved by
relocating several nodesw1, . . . ,wm, each node compensating a part of the volume
loss. Figure B.3(b) illustrates this idea for a 2D setting. The nodex has moved
through a wall, which is a curved line at a certain height. We distinguish5 nodeswi

in the neighbourhood ofx that are candidates to be relocated. Letαi be5 weights
that sum to1. Each of the nodeswi is relocated over a distancedwi following the
procedure described above, with the difference that the volume loss thatwi has to
compensate is multiplied by the weightαi. In this way the amount of fluiddV is
distributed over a larger part of the total fluid, which is physically more correct.

Example B.1

We demonstrate the procedure described in this appendix fora thin layer of fluid
that is slightly curved, see Figure B.4. In this example we only use a single node
to compensate the volume loss. Located at the right is a straight wall, represented
graphically by the light-gray surface. At timet = tn all nodes at the fluid surface
are at the left side of the wall (Figure B.4(a)). A numerical method provides the
coordinates of the nodes at the new time levelt = tn+1, see Figure B.4(b). We
observe that a number of nodes has moved through the wall. We correct this by
relocating these nodes at appropriate points at the wall. Toaccount for the volume
loss, we also relocate a number of nodes that are at the opposite side of the fluid layer.
The new situation is shown in Figure B.4(c). We observe that the fluid perfectly
touches the wall.

Figure B.5 shows a cross-section of the situation. The solidline represents the
fluid layer, for which some nodes move to the right-hand side of the wall. The wall is
repesented by the vertical dashed line. In the third figure the fluid perfectly touches
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(a) t = t
n (b) t = t

n+1 (c) t = t
n+1

Figure B.4: A fluid layer near a wall (a). At timet = tn+1 some nodes of the discretised
fluid surface have moved through the wall (b). These nodes arerelocated at the wall.
Simultaneously some other nodes at the opposite side of the fluid layer are also relocated
to compensate the volume loss (c).

(a) t = t
n (b) t = t

n+1 (c) t = t
n+1

Figure B.5: Cross-sectional view of Figure B.4
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Figure B.6: Several nodes are used to compensate the volume loss caused by relocatingx to
the wall. The gray dashed line shows the fluid before, the black line the fluid after correction.
The numbers near the nodes represent the weightsαi.

the wall. At the same time we see that a number of nodes at the opposite side of the
fluid have also been relocated.

When a single node crosses the wall while all its neighbours stay at the other side,
it turns out that the procedure described above is volume preserving. In the case that
also some neighbours cross the wall, small errors are made. This is caused by the fact
that we have to relocate nodes simultaneously, while the nodes share information.
For instance, when a node moves over a small distance, the normal vectors at all
neighbouring elements alter. Subsequently the normal vectors in all neighbouring
nodes also alter. However the errors that are made due to these effects are relatively
small. For the current example the volume loss is only6.3 · 10−2%. �

Example B.2

In this example we demonstrate the strategy to use multiple nodes to compensate the
volume loss after relocating nodes at the wall. For a thin layer of fluid in 2D the
lowest node has moved through a horizontal line, representing the wall. This node is
relocated at the wall. To account for the volume loss we also relocate the five nearest
nodes. By varying the weightsαi, we obtain various shapes of the fluid. Figure B.6
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present several shapes, each one corresponding to a particular set of weights. The
first shape is the result when only the node oppositex is relocated, as we did in the
previous example. Apart for this particular choice, the other shapes only have small
differences. It is a matter of taste to determine which shape, i.e. which set of weights,
is preferrable. �



Appendix C

Smoothing techniques

In this appendix we present a number of smoothing techniques. The smoothing is
applied to a triangulated surface directly, or to a scalar function or vector field at this
discretised surface.

C.1 Laplacian smoothing

A well-known technique to smooth a triangulated surface is the technique called
Laplacian smoothing[42, 64, 96]. LetS be a triangulated surface withN nodes
andK triangular elements. The idea is that the coordinates of thenodes contain
noise due to inaccuracies in the numerical method that determines these coordinates.
The noise causes the surface to look unsmooth and irregular.Laplacian smoothing
attempts to remove the noise, thus obtaining a smoother surface.

Let x1, . . . ,xm be them neighbours of a nodex, i.e. the nodes that share a
triangular element withx. For each nodex we compute the geometric averagexav

of the neighbouring nodes,

xav :=
1

m

m∑

i=1

xi. (C.1)

If the nodex is too far away fromxav , it is relocated to a weighted average ofx
andxav,

x→ (1 − w)x+ wxav, (C.2)

wherew is a suitably chosen weight,0 ≤ w ≤ 1. In this way x is moved
nearer toxav. If w = 1, x is placed atxav, if w = 0, x stays at its own place.
We can relocate every node at the surface, in which case we apply global smoothing.
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Figure C.1: A triangulated sphere whose coordinates contains noise is smoothed to an
almost perfect sphere.

We may also replacex only if the distance toxav exceeds a certain tolerance value.
In that case we applylocal smoothing. In other words, we smooth the surface only at
nodes where it is most needed. For both global and local smoothing, the process can
be repeated several times. In each iteration the surface gets smoother.

A side-effect of the smoothing is that the volume that the surface encloses
decreases. This is a typical disadvantage of standard Laplacian smoothing. There are
several modifications to the standard technique to avoid volume loss. The simplest
modification is to restrict the movement of the nodex to a direction perpendicular
to the normal at the surface atx. Unfortunately this reduces the performance of the
smoothing. Another possibility is to consider pairs of nodes that are connected by an
edge [64]. The two nodes are relocated to new positions simultaneously. In this way
we have more freedom to move the nodes to the desired locations, while conserving
the volume. In the examples of this section we use the latter modification to Laplacian
smoothing.

Example C.1

As an example we consider a triangulated unit sphere, as is shown in Figure C.1.
Normally distributed noise is added to the coordinates of the nodes. By applying
several iterations of Laplacian smoothing the noise is removed and a smooth surface
appears. �

Example C.2

For the Laplacian smoothing technique three parameters areneeded. The weightw,
the number of iterationsn and the type of smoothing, which can be global or local. In
Figure C.2 we let these parameters vary and study the performance of the smoothing.
Again we consider the example of the noisy unit sphere. Ideally all nodes are at a
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Figure C.2: The error of the discretised surface after Laplacian smoothing. The circles
represent global smoothing while the squares represent local smoothing.

distance1 from the origin. For the noisy sphere this is not the case and we can define
the error at a nodex as the difference between‖x‖ and1.

In Figure C.2(a) we show the mean error as the weightw varies between zero
and one. We both apply global smoothing (circles) and local smoothing (squares)
and perform one iteration. We observe that global smoothingperforms better than
local smoothing. For global smoothing the best choice of theweight isw = 0.5.

In Figure C.2(b) we show the mean error as the number of iterations n varies
between0 and8. The weight is kept atw = 0.5. For the local smoothing we see
that the error decreases as we perform more iterations. However the calculation time
grows linearly with the number of iterations. Since the smoothing process is mostly a
post-processing step, the computations should not become too time-consuming. For
global smoothing there is an optimum ofn = 3 iterations, which leads to a relatively
short computation time. �

C.2 Smoothing scalar function

We use the technique of Laplacian smoothing to develop a technique to smooth a
scalar function at a triangulated surface. Letφ be a smooth scalar function at the
surfaceS. We assume that the values ofφ at the nodes are computed numerically
and contain noise. We want to remove this noise such thatφ becomes smoother. For
each nodex we compare the valueφ(x) to the average function valueφav(x) of the
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function at the neighbours ofx,

φav(x) :=
1

m

m∑

i=1

φ(xi). (C.3)

The value ofφ atx is replaced by a weighted average ofφ(x) andφav(x),

φ(x) → (1 − w)φ(x) + wφav(x). (C.4)

If we do this for every node we apply global smoothing. We may also decide to
changeφ(x) only if the difference betweenφ(x) andφav(x) is larger than a certain
tolerance value. In that case we apply local smoothing. The whole process can
be repeated several times, in each iteration improving the smoothness of the scalar
functionφ.

Example C.3

To demonstrate the smoothing of a scalar function we consider the unit sphere. This
time we do not add noise to the coordinates of the nodes of the triangulated sphere,
so the sphere is a perfect sphere. As a test function we chooseφ(x) = x + y + z
and add normally distributed noise to the function values atthe nodes. In analogy to
Laplacian smoothing three parameters exist: the weightw, the number of iterations
n and the type of smoothing, which can be global or local. In Figure C.3 we let these
parameters vary and study the performance of the smoothing.For this goal we define
the following error measure. We consider the vector with exact function values of
φ and the vector with smoothed function values ofφ. Then we determine the mean
difference between these two vectors.

In Figure C.3(a) we let the weightw vary between zero and one. We apply global
smoothing (circles) and local smoothing (squares). As was the case for Laplacian
smoothing, global smoothing gives better results than local smoothing. The optimal
choice forw in the case of global smoothing isw = 0.6. In Figure C.3(b) we let
the number of iterationsn vary between0 and6. We observe thatn = 2 or n = 3
iterations of smoothing yield the smallest error. �

C.3 Smoothing vector field

In the same way as we smoothed a scalar function at a triangulated surface we
may also smooth a vector field at a surface. Letv be a smooth vector field at the
surfaceS. We assume that for each nodex the vectorv(x) is computed numerically
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Figure C.3: The error in a scalar function at the discretised surface after smoothing. The
circles represent global smoothing while the squares represent local smoothing.

and contains noise. We want to remove this noise such thatv becomes smoother. For
each nodex we compare the vectorv(x) to the average valuevav(x) of the vectors
at the neighbours ofx,

vav(x) :=
1

m

m∑

i=1

v(xi). (C.5)

The value ofv atx is replaced by a weighted average ofv(x) andvav(x),

v(x) → (1 − w)v(x) + wvav(x). (C.6)

If we do this for all nodes we apply global smoothing. For local smoothing we look
at the difference in magnitude and direction betweenv(x) andvav(x). If one of
these two is larger than a certain tolerance value, the velocity in x is replaced by the
weighted average. The whole process is repeatedn times, in each iteration improving
the smoothness of the vector fieldv.

Example C.4

As an example we consider the smooth vector fieldv = [x2, y2, z2] at the surface of
the unit sphere. We add normally distributed noise to the values ofv at the nodes and
apply the smoothing technique to obtain a smoother vector field. There exist three
parameters: the weightw, the number of iterationsn and the type of smoothing,
which can be global or local. In Figure C.4 we let these parameters vary and study
the performance of the smoothing. For this goal we define an error measure. At each
node we take the Euclidean norm of the difference between theexact vector field and
the smoothed vector field. Then we take the average of all these norms.
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Figure C.4: The reduction of the error at a vector field at the discretisedsurface due to
Laplacian smoothing. The circles represent global smoothing while the squares represent
local smoothing.

In Figure C.4(a) we let the weightw run from zero to one and apply global
smoothing (circles) and local smoothing (squares). From the graph we see that global
smoothing performs better than local smoothing for small weights. If a weightw is
chosen larger than0.6 it is better to use local smoothing. However the best results
are obtained for global smoothing with a weightw = 0.3. Figure C.4(b) shows the
error as a function of the number of iterations. For global smoothing the best choice
isn = 3 iterations. If local smoothing is performed,n = 12 iterations give the lowest
error. Performing more iterations does not lower the error. �
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Summary

The boundary element method (BEM) is an efficient numerical method that
approximates solutions of various boundary value problems. Despite its success little
research has been performed on the conditioning of the linear systems that appear in
the BEM.

For a Laplace equation with Dirichlet boundary conditions aremarkable
phenomenon is observed; the corresponding boundary integral equation (BIE) is
singular for a certain critical size of the 2D domain. As a consequence the discrete
counterpart of the BIE, the linear system, is singular too, or at least ill-conditioned.
This is reflected by the condition number of the system matrix, which is infinitely
large, or at least very large. When the condition number of the BEM-matrix is large,
the linear system is difficult to solve and the solution of thesystem is very sensible
to perturbations in the boundary data.

For a Laplace equation with mixed boundary conditions a similar phenomenon
is observed. The corresponding BEM-matrix consists of two blocks; one block
originates from the BEM-matrix belonging to the Dirichlet problem, the other block
originates from the BEM-matrix belonging to the Neumann problem. The composite
matrix inherits the solvability problems from the Dirichlet block. In other words, for
the Laplace equation with mixed boundary conditions there exists also a critical size
of the 2D domain for which the BEM-matrix has an infinitely large condition number.
Hence the size and shape of the domain affects the solvability of the BEM problem.

The critical size of the domain for which the BIE becomes singular is related to
the logarithmic capacity of the domain. The logarithmic capacity is a positive real
number that is a function of the size and shape of the domain. If this logarithmic
capacity is equal to one, the domain is a critical domain, andfor this domain the
BIE becomes singular. Thus by computing the logarithmic capacity we cana-priori
determine whether the BIE will be singular or not. The logarithmic capacity depends
linearly on the scale of the domain, and thus a domain with logarithmic capacity equal
to one can always be found by rescaling the domain. Unfortunately the logarithmic
capacity can only be computed analytically for a few simple domains; for more
involved domains the logarithmic capacity can be estimatedthough.
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There are several possibilities to avoid large condition numbers, i.e. singular BIEs
that appear at critical domains. The first option is to rescale the domain such that the
logarithmic capacity is unequal to one. One can also add a supplementary condition
to the BIE and the linear system. A drawback of this option is that the linear system
has more equations than unknowns and different techniques are required to solve the
system. A third option is to slightly modify the fundamentalsolution of the Laplace
operator. This fundamental solution directly appears in the BIE and it can be shown
that a suitable modification yields BIEs that do not become singular.

The critical domains for which the BIEs become singular do not restrict to
Laplace equations only. Also for BIEs applied to the biharmonic equation or the
elastostatic equations and the Stokes equations such critical domains exist. As the
last two equations are vectorial equations, also the corresponding BIE consists of
two equations. As a consequence two critical domains can be found for which these
BIEs become singular. To obtain nonsingular BIEs techniques similar to the Laplace
case can be used. Unfortunately we cannota-priori determine the sizes for which
the BIEs becomes singular, and thus do not know to what size weshould rescale the
domain to obtain nonsingular BIEs.

The existence of critical domains is in essence caused by thelogarithmic term
in the fundamental solutions for the elliptic boundary value problems in 2D. This
logarithmic term does not depend linearly on the size of the domain. When a domain
is scaled, i.e. multiplied by a scale factor, the argument ofthe logarithm is also
multiplied by this scale factor, but the logarithm turns this into an additive term. Thus
the logarithm transforms multiplication into addition. This affects the BIEs in such a
way that critical domains can appear. The fundamental solutions of boundary value
problems in 3D do not contain a logarithmic term. Hence scaling of the domain does
not affect the fundamental solution, and consequently alsothe BIE is not affected.
Hence we may safely rescale 3D domains without the risk to encounter a critical
domain.

An example in which a domain takes many different sizes and shapes is the
blowing problem. In this problem a viscous fluid is blown to a desired shape.
Typically the time is discretised into a set of discrete timesteps, and at each step
the shape of the fluid is computed by solving the Stokes equations. When attempting
to simulate this problem in 2D, we meet a large number of 2D domains, and we risk
that one of these domains is equal to or approaches a criticaldomain. In such a case
the BEM will have difficulties with solving the Stokes equations for that particular
domain.

When simulating the blowing problem in 3D, no critical domains are
encountered. It turns out that the BEM is a very efficient numerical method for this
particular 3D problem with a moving boundary. As we are merely interested in the
shape of the fluid, we only need to know the flow of its boundary.The BEM does
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exactly that; it does not compute the flow at the interior of the fluid. Furthermore it is
rather easy to include other effects from the blowing problem in the model, such as
gravity, surface tension and friction from the contact of the fluid with a wall. As only
the boundary of the fluid is discretised, the system matricesthat appear in the BEM
are smaller than the system matrices that appear when solving the problem with a
finite element method, for example. Though the BEM-matricesare dense, while the
finite element matrices are sparse, the computational effort for the BEM is relatively
low. In short, the BEM is a very appropriate numerical methodwhen solving blowing
problems.



Samenvatting

De boundary element method (BEM) is een efficiënte numerieke methode om
oplossingen van randwaardeproblemen te benaderen. Ondanks haar succes is er
weinig onderzoek gepleegd naar het goed of slecht geconditioneerd zijn van de
stelsels van lineaire vergelijkingen die voorkomen in de BEM.

Voor de Laplace vergelijking met Dirichlet randvoorwaarden is een opmerkelijk
verschijnsel geobserveerd; the bijbehorende randintegraalvergelijking (BIE) is
singulier voor een bepaalde kritieke grootte van het 2D gebied. Daardoor is de
discrete versie van de BIE, het stelsel van lineaire vergelijkingen, ook singulier,
of tenminste slecht geconditioneerd. Dit wordt zichtbaar in het conditiegetal van
de systeemmatrix, welke oneindig groot is, of tenminste heel erg groot. Als het
conditiegetal van de BEM-matrix groot is, is het stelsel vergelijkingen moeilijk op
te lossen en ook is de oplossing van het stelsel gevoelig voorperturbaties in de
randvoorwaarden.

Voor een Laplace vergelijking in 2D met gemengde randvoorwaarden wordt een
vergelijkbaar verschijnsel geobserveerd. The bijbehorende BEM-matrix bestaat uit
twee blokken; een blok uit de BEM-matrix behorende bij het Dirichlet probleem,
en een blok uit de BEM-matrix behorende bij het Neumann probleem. De
samengestelde matrix erft de oplosbaarheidsproblemen vanhet Dirichlet blok.
Daardoor bestaat er voor de Laplace vergelijking met gemengde randvoorwaarden
ook een kritieke grootte van het gebied waarvoor het conditiegetal van de BEM-
matrix oneindig groot wordt. Met andere woorden, de groottevan het gebied
beı̈nvloedt de oplosbaarheid van het BEM probleem.

De kritieke grootte van een gebied waarvoor de BIE singulierwordt is gerelateerd
aan de logaritmische capaciteit van het gebied. De logaritmische capaciteit is een
positief reëel getal dat een functie is van de grootte en de vorm van het gebied. Als
deze logaritmische capaciteit gelijk is aan één, dan is het gebied een kritiek gebied,
en is de BIE singulier. Door de logaritmische capaciteit te berekenen kunnen we
a-priori bepalen of een BIE singulier is. De logaritmische capaciteit hangt lineair
af van de schaal van een gebied, en een gebied met logaritmische capaciteit gelijk
aan één kan dus altijd gevonden worden door het gebied te herschalen. Helaas
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kan de logaritmische capaciteit alleen analytisch worden uitgerekend voor een paar
eenvoudige gebieden; voor ingewikkeldere gebieden kan de logaritmische capaciteit
worden geschat.

Er zijn verschillende mogelijkheden om grote conditiegetallen, i.e. singuliere
BIEs als gevolg van kritieke gebieden, te voorkomen. De eerste optie is het gebied te
herschalen zodanig dat de logaritmische capaciteit ongelijk is aan één. Men kan ook
een extra vergelijking toevoegen aan de BIE en het stelsel lineaire vergelijkingen. Een
nadeel hiervan is dat we een stelsel krijgen met meer vergelijkingen dan onbekenden,
en we hebben andere technieken nodig om deze stelsels op te lossen. Een derde
optie is de fundamentaaloplossing van de Laplace operator aan te passen. Deze
fundamentaaloplossing komt voor in de BIE en het kan aangetoond worden dat een
geschikte aanpassing tot BIEs leidt die niet meer singulierzijn.

De kritieke gebieden waarvoor de BIEs singulier zijn beperken zich niet tot
de Laplace vergelijking. Ook voor BIEs voor de biharmonische vergelijking of
de elastostatische vergelijkingen en de Stokes vergelijkingen bestaan zulke kritieke
gebieden. Aangezien de laatste twee vergelijkingen vectoriële vergelijkingen zijn,
bestaat de bijbehorende BIE ook uit twee vergelijkingen. Dientengevolge kunnen er
ook twee kritieke gebieden gevonden worden waarvoor deze BIEs singulier zijn. Om
niet-singuliere BIEs te verkrijgen kunnen vergelijkbare methodes gebruikt worden als
voor het geval van de Laplace vergelijking. Helaas kunnen weniet a-priori bepalen
voor welke kritieke gebieden de BIEs singulier zijn, en dus weten we ook niet hoe
we de gebieden moeten herschalen om niet-singuliere BIEs teverkrijgen.

Het verschijnsel van kritieke gebieden wordt in essentie veroorzaakt door
de aanwezigheid van een logaritmische term in de fundamentaaloplossing voor
elliptische randwaardeproblemen in 2D. Deze logaritmische term hangt niet-linear af
van de grootte van het gebied. Als een gebied wordt geschaald, i.e. vermenigvuldigd
met een schaalfactor, dan wordt het argument van de logaritme ook vermenigvuldigd
met deze schaalfactor, maar de logaritme verandert dit in een optelling. Op deze
manier verandert de logaritme een vermenigvuldiging in eenoptelling. Hierdoor
worden de vergelijkingen dusdanig veranderd dat verschijnselen als kritieke gebieden
kunnen optreden. De fundamentaaloplossing voor randwaardeproblemen in 3D
bevat geen logaritmische term. Een herschaling van het gebied heeft daardoor
geen significante invloed op de fundamentaaloplossing, en ook de BIE wordt niet
essentieel beı̈nvloed. Hierdoor kunnen we een 3D gebied herschalen zonder het risico
te lopen op een kritiek gebied te stuiten.

Een voorbeeld waarin een gebied veel verschillende groottes en vormen aanneemt
is het blaasprobleem. In het blaasprobleem wordt een visceuze vloeistof in een
gewenste vorm geblazen. De tijd wordt vaak gediscretiseerdin een aantal discrete
tijdstappen, en in elke stap kan de vorm van de vloeistof berekend worden door de
Stokes vergelijkingen op te lossen. Als we dit probleem in 2Dsimuleren doorlopen
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we een groot aantal gebieden, en we lopen het risico dat we op een kritiek gebied
stuiten of op een gebied dat bijna kritiek is. In zo’n geval zal de BEM moeite hebben
om de Stokes vergelijkingen op te lossen.

Als we het blaasprobleem simuleren in 3D komen we geen kritieke gebieden
tegen. Het blijkt dat de BEM een zeer efficiënte numerieke methode is voor dit type
probleem in 3D met een bewegende rand. Omdat we eigenlijk alleen geı̈nteresseerd
zijn in de vorm van de vloeistof, hoeven we alleen de stromingvan de rand te weten.
De BEM doet dit precies; ze berekent de stroming in het inwendige niet. Verder is het
gemakkelijk om andere aspecten van het blaasprobleem toe tevoegen aan het model,
zoals zwaartekracht, oppervlaktespanning en wrijving alsgevolg van contact tussen
vloeistof en een wand. Omdat alleen de rand van de vloeistof gediscretisseerd wordt,
zijn de systeemmatrices die voorkomen in de BEM veel kleinerdan de matrices die
voorkomen in bijvoorbeeld de eindige elementen methode. Ook al zijn de BEM-
matrices vol, terwijl eindige elementen matrices ijl zijn,de rekentijd voor de BEM
is relatief kort. Kortom, de BEM is een uitermate geschikte numerieke methode om
blaasproblemen te simuleren.
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