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Abstract

An adaptive method for the determination of the order of element (or element order) was developed for the boundary element analysis of

3D elastostatic problems using quasi-Lagrange interpolation. Here the order of element means the highest order of polynomial function,

which interpolates the displacement distribution in element. This method was based on acquiring the desired accuracy for each boundary

element. From the numerical experiments, the relation j ¼ kð1=pÞb was deduced, where j is the error of the result of the boundary element

analysis relative to the exact value, p is the order of element, and k and b are constants.

Applying this relation to the two results of computations with different orders of element, the order of element for the third computation

was deduced. A computer program using this adaptive determination method for the order of element was developed and applied to several

3D elastostatic problems of various shapes. The usefulness of the method was illustrated by these application results.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the BEM analysis, and also in the FEM analysis,

the approach to obtain analysis result of high accuracy by

changing the discretization meshes or the order of elements

based on the error analysis is known as the adaptive method.

The adaptive method falls typically into three basic types:

adaptive r method, adaptive h method and adaptive

p method. Here the adaptive p method is called p-adaptive

method. Among these adaptive methods, adaptive h method

and adaptive p method are the main promising approaches

when being used as independent method. Many research

papers on the adaptive h method for BEM analysis have

been published [1–9]. But few on the adaptive p method for

BEM analysis have been reported [10–14].

In this paper, we attempt to propose an adaptive p

method for BEM analysis with an accuracy guarantee

technique—an approach of determination of the orders of

elements (the orders of polynomial functions which

interpolate the displacement distributions in elements)

for the desired accuracy on the basis of error analysis.

For this purpose, as presented in the following sections,

at first, the relation between the order of element and the

error of analysis was investigated based on some numerical

experiments. Next, an algorithm of the adaptive method of

determination of the order of element was deduced from

the relation. Finally, a computer program accomplished

with this method was developed and was applied to

various kinds of problems to examine the usefulness of

the method.

However, we cannot now draw a conclusion that the

adaptive p method for BEM analysis proposed here is

suitable for all kinds of geometry and boundary

conditions, for example, the domain of crack tip which

has a very small radius of curvature. This problem is still

under study.
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2. Relation between the order of element

and analysis error

In order to collect the fundamental information to

establish our adaptive p method, the first step of the study

was to investigate the relation between the order of element

and analysis error by fundamental numerical experiments.

In the fundamental numerical experiments, the problems

of a thick-walled spheroid subjected to an internal or

external pressure were used. The exact solutions of the

displacement and stress in these problems are known in the

whole domain by an analytical method. In these numerical

experiments, as shown in Fig. 1, the ratio a=b of the inner

radius a to the outer radius b was assigned to 0, 0.2 and 0.5.

Because of the symmetry, only the 1/8 domain was

analyzed. The element division and the names assigned to

the element groups are also shown in Fig. 1.

The boundary element adopted here was a curved

triangular element with quasi-Lagrange interpolation

functions instead of hierarchical interpolation functions

[15] introduced by A. Peano. Because the order of

quasi-Lagrange interpolation functions, here we call shape

function, may vary from element to element without any

loss of inter-element continuity conditions, it is especially

suitable to be used in the adaptive p method.

Shape functions of order p; which have the maximum or

nearly maximum values at the collocation points on the edges

of triangular element are shown in Table 1. The positions of

collocation points on the edges can be selected arbitrarily. In

the study we adopted the position of these collocation points,

the area coordinates of which are shown in Table 1.

Also shape functions of order p; which have the

maximum or nearly maximum values at the collocation

points in the inner domain of triangular element are shown

in Table 2. The positions of collocation points in the inner

domain can also be selected arbitrarily. In the study we

adopted the position of these collocation points, the area

coordinates of which are shown in Table 2.

Shape functions which have the maximum values at

the three nodal points of triangular element are not

shown, but they are linear functions of area coordinates

such as zi; zj and zk:

Fig. 1. Problem domain and mesh division for fundamental numerical experiments.
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The relation to be obtained is the relation between the

order of element and analysis error of the displacement and

of the traction in the whole domain of the problem.

This relation is indispensable for the adaptive determination

of the order of each element for the third meshing in our

adaptive p method.

The results of the fundamental numerical experiments

are shown in Figs. 2–5. These figures show the relation

between the reciprocal of the order of element and the error

parameters of the analyses, which are defined by

j ¼

ð
G
ðuBEM 2 uEÞ

2dGð
G
ðuEÞ

2dG

ð1Þ

and

j ¼

ð
G
ðtBEM 2 tEÞ

2dGð
G
ðtEÞ

2dG

ð2Þ

corresponding to the displacement and the stress,

respectively. Here uBEM and tBEM denote the BEM solutions,

while uE and tE denote the exact solutions. The different

loads, mesh divisions and element groups are distinguished

by the annotations in these figures. IP and OP denote the

internal pressure and the external pressure, respectively.

4E , 34E indicate the number of elements, and G1 , G3

indicate the names of the groups of elements shown in Fig. 1.

From these figures we can see the fact that the lines of the

relation between the reciprocal of the order p of element and

the error parameter j of the displacement or of

the traction can be regarded approximately as straight

lines. Based on these convergence characteristics,

the relations in the form ofð
G
ðuBEM 2 uEÞ

2dGð
G
ðuEÞ

2dG

¼ k
1

p

� �b
ð3Þ

andð
G
ðtBEM 2 tEÞ

2dGð
G
ðtEÞ

2dG

¼ k
1

p

� �b
ð4Þ

Table 2

Shape functions and area coordinates for collocation points in the inner

domain of triangular element

p Shape function Area coordinate

3 N3 ¼ zizjzk ðzi; zj; zkÞ ¼ ð 1
3
; 1

3
; 1

3
Þ

4 N4ð123Þ ¼ zizjzkðzi 2
1
4
Þ ðzi; zj; zkÞ ¼ ð 1

2
; 1

4
; 1

4
Þ

5 N5ð123Þ ¼ zizjzkðzi 2
1
5
Þðzi 2

2
5
Þ ðzi; zj; zkÞ ¼ ð 3

5
; 1

5
; 1

5
Þ

N5ð426Þ ¼ zizjzkðzj 2
1
5
Þðzk 2

1
5
Þ ðzi; zj; zkÞ ¼ ð 1

5
; 2

5
; 2

5
Þ

6 N5ð123Þ ¼ zizjzkðzi 2
1
6
Þðzi 2

1
3
Þðzi 2

1
2
Þ ðzi; zj; zkÞ ¼ ð 2

3
; 1

6
; 1

6
Þ

N5ð426Þ ¼ zizjzkðzj 2
1
6
Þðzj 2

1
3
Þðzk 2

1
6
Þ ðzi; zj; zkÞ ¼ ð 1

6
; 1

2
; 1

3
Þ

N5ð729Þ ¼ zizjzkðzk 2
1
6
Þðzk 2

1
3
Þðzj 2

1
6
Þ ðzi; zj; zkÞ ¼ ð 1

6
; 1

3
; 1

2
Þ

N5ð10Þ ¼ zizjzkðzi 2
1
6
Þðzj 2

1
6
Þðzk 2

1
6
Þ ðzi; zj; zkÞ ¼ ð 1

3
; 1

3
; 1

3
Þ

Table 1

Shape functions and area coordinates for collocation points on the edges of triangular element

p Shape function Area coordinate

2 N2ð1Þ ¼ ðzi 2 1Þzi ðzi; zj; zkÞ ¼ ð 1
2
; 1

2
; 0Þ

3 N3ð122Þ ¼ ðzi 2 1Þðzi 2
1
3
Þzi ðzi; zj; zkÞ ¼ ð 2

3
; 1

3
; 0Þ

4 N4ð122Þ ¼ ðzi 2 1Þðzi 2
1
2
Þðzi 2

1
4
Þzi ðzi; zj; zkÞ ¼ ð 3

4
; 1

4
; 0Þ

N4ð3Þ ¼ ðzi 2 1Þðzi 2
3
4
Þðzi 2

1
4
Þzi ðzi; zj; zkÞ ¼ ð 1

2
; 1

2
; 0Þ

5 N5ð122Þ ¼ ðzi 2 1Þðzi 2
3
5
Þðzi 2

2
5
Þðzi 2

1
5
Þzi ðzi; zj; zkÞ ¼ ð 4

5
; 1

5
; 0Þ

N5ð324Þ ¼ ðzi 2 1Þðzi 2
4
5
Þðzi 2

2
5
Þðzi 2

1
5
Þzi ðzi; zj; zkÞ ¼ ð 3

5
; 2

5
; 0Þ

6 N6ð122Þ ¼ ðzi 2 1Þðzi 2
2
3
Þðzi 2

1
2
Þðzi 2

1
3
Þðzi 2

1
6
Þzi ðzi; zj; zkÞ ¼ ð 5

6
; 1

6
; 0Þ

N6ð324Þ ¼ ðzi 2 1Þðzi 2
5
6
Þðzi 2

1
2
Þðzi 2

1
3
Þðzi 2

1
6
Þzi ðzi; zj; zkÞ ¼ ð 2

3
; 1

3
; 0Þ

N6ð5Þ ¼ ðzi 2 1Þðzi 2
5
6
Þðzi 2

2
3
Þðzi 2

1
3
Þðzi 2

1
6
Þzi ðzi; zj; zkÞ ¼ ð 1

2
; 1

2
; 0Þ

Fig. 2. Convergence characteristics for displacement ða=b ¼ 0Þ:
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were obtained. The value of b; which denotes the average

slope of the lines was estimated to be 8 in the case of

displacement and to be 6 in the case of stress from the slopes

of the straight lines, respectively, drawn on the logarithmic

graphs. And k is constant.

3. Adaptive determination of the order of element

In this chapter, we propose a method for the adaptive

determination of the orders of elements for the adaptive

p method for BEM analysis using Eqs. (3) or (4).

From the numerical experiments using the thick-walled

spheroid subjected to an internal or external pressure, the

relations between the reciprocal of the order p of element

and the error parameter j of the displacement or of the

traction were found to be approximately straight lines on the

logarithmic graphs, hence Eqs. (3) and (4) were obtained.

Although there is no theory, which could be applied to prove

them and it is not yet known whether they are suitable for

other problems, we consider these relations as tenable ones

and use these relations to establish a method of determi-

nation of the order of element.

In the following, a method of the adaptive determination

of the order of element in the case of displacement is

established. A method for the traction is omitted, because

the process to establish this method is the same to the

process for the traction.

Eq. (3) can be applied to two stages of computations,

which are performed one after another. At the ðn2 1Þth

stage of computation, due to Eq. (3), the relation between

the order p of element and the error parameter j of

displacement is given byð
G
ðuðn21Þ

BEM 2 uEÞ
2dGð

G
ðuEÞ

2dG

¼ k
1

pðn21Þ

� �b
ð5Þ

Eq. (3) is applied to every group of elements. In the case of

the succeeding ðnÞth stage of computation, the relation

between the order p of element and the error parameter j

of traction is similarly given by

ð
G
ðuðnÞ

BEM 2 uEÞ
2dGð

G
ðuEÞ

2dG

¼ k
1

pðnÞ

� �b
ð6Þ

Subtracting Eq. (6) from Eq. (5), we can get

ð
G

{ðuðn21Þ
BEM 2 uEÞ

2 2 ðuðnÞ
BEM 2 uEÞ

2}dGð
G
ðuEÞ

2dG

¼ k
1

pðn21Þ

� �b
2

1

pðnÞ

� �b� �
ð7Þ

Fig. 3. Convergence characteristics for displacement ða=b ¼ 0:2Þ: Fig. 4. Convergence characteristics for displacement ða=b ¼ 0:5Þ:
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Provided that the fully converged displacement is either

monotonically decreasing or monotonically increasing,

we have

ðuðn21Þ
BEM 2 uEÞ

2 2 ðuðnÞ
BEM 2 uEÞ

2 $ ðuðn21Þ
BEM 2 uðnÞ

BEMÞ2 ð8Þ

Hence, Eq. (7) can be written into an inequality equation as

k
1

pðn21Þ

� �b
2

1

pðnÞ

� �b� �
$

ð
G
ðuðn21Þ

BEM 2 uðnÞ
BEMÞ2dGð

G
ðuEÞ

2dG

ð9Þ

Solving for k; we can get

k $

ð
G
ðuðn21Þ

BEM 2 uðnÞ
BEMÞ2dG

1

pðn21Þ

� �b
2

1

pðnÞ

� �b� �ð
G
ðuEÞ

2dG

ð10Þ

If the final stage of computation, i.e. ðnþ 1Þth stage of

computation, gives the solution uðnþ1Þ
BEM with an error smaller

than the allowable error u; we can write

u $
uðnþ1Þ

BEM 2 uE

uE

�����
����� ð11Þ

Using this and the relation between the order pðnþ1Þ of

element and displacement uðnþ1Þ
BEM at the ðnþ 1Þth stage of

Fig. 5. Convergence characteristics for traction.

Fig. 6. Process of p-adaptive boundary element method.
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computation, we can further get

u2 $

ð
G
ðuðnþ1Þ

BEM 2 uEÞ
2dGð

G
ðuEÞ

2dG

¼ k
1

pðnþ1Þ

� �b
ð12Þ

Combining the inequality Eq. (10) with Eq. (12), and

solving for pðnþ1Þ; we have

ðpðnþ1ÞÞb $

ð
G
ðuðn21Þ

BEM 2 uðnÞ
BEMÞ2dG

u2 1

pðn21Þ

� �b
2

1

pðnÞ

� �b� �ð
G
ðuEÞ

2dG

ð13Þ

In the state of fully converged displacement, uðnÞ
BEM is the best

estimate to uE: So we can have

ðpðnþ1ÞÞb$

ð
G
ðuðn21Þ

BEM 2uðnÞ
BEMÞ2dG

u2 1

pðn21Þ

� �b
2

1

pðnÞ

� �b� �ð
G
ðuðnÞ

BEMÞ2dG

ð14Þ

Based on this inequality equation, the necessary order p of

element which makes the error of displacement satisfy the

allowable error u could be found. This order p of element

is an average order of all elements in every group of

elements.

Considering the error of each element on the basis of

the average error of a group of elements, we can get

the equation

ðpðnþ1Þ
i Þb$

ð
G
ðuðn21Þ

BEMi2uðnÞ
BEMiÞ

2dG

u2
1

pðn21Þ
i

 !b

2
1

pðnÞ
i

 !b( )ð
G
ðuðnÞ

BEMiÞ
2dG

ð15Þ

by which the order pðnþ1Þ
i of ith element at the ðnþ1Þth

stage of computation can be computed. By applying

Eq. (15) to every element of the whole domain, an

appropriate global approximation to give a desired

accuracy is expectable.

By similar deducing procedure, we can alternatively get

the equation

ðpðnþ1Þ
i Þb$

ð
G
ðtðn21Þ

BEMi 2tðnÞBEMiÞ
2dG

u2
1

pðn21Þ
i

 !b

2
1

pðnÞ
i

 !b( )ð
G
ðtðnÞBEMiÞ

2dG

ð16Þ

for traction.

When the order of every element calculated by Eq. (15)

or (16) is used, it is to be expected that the result of BEM

will satisfy the allowable error.

Because the orders of elements are different from each

other, the orders on the element sides need to be adjusted to

keep the continuity between the neighboring elements.

The order on a side of element is assigned to the higher

order of two neighboring elements.

On the basis of these equations and explanation, the error

estimation or accuracy guarantee of the adaptive p method

for BEM analysis was carried out according to the flow

shown in Fig. 6. At the first stage of computation, the linear

element was used, and at the second stage, the quadratic

element was used. At the third stage, the order of element

calculated by Eq. (15) or (16) was used. The value of the

allowable error u was assigned to, for example, 3 and 1%.

Fig. 7. Problem used for numerical experiments.
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4. Results of numerical experiments

A computer program using the adaptive p method for the

accuracy guarantee mentioned above was developed and

applied to various 3D elastostatic problems to examine the

usefulness of our adaptive p method.

As mentioned before, at the first stage of computation,

the linear element was used, and at the second stage,

the quadratic element was used. At the third stage of

computation, the order of element calculated by Eq. (16)

was used. The value of the allowable error u was assigned to

be 3 and 1%.

For the examination of the usefulness of our adaptive

p method, the program was applied to 13 problems shown in

Fig. 7. The stress concentration factors of these problems

were computed. For the problems (A) , (H), and (M),

the precise numerical solutions by 3D theory of elasticity

Table 3

Results of the numerical experiments

Problem 3% 1% Exact value

BEM Error (%) BEM Error (%)

A 1.991 1.066 1.953 0.863 1.970

B 2.060 1.879 2.008 0.692 2.022

C 1.759 1.512 1.791 0.280 1.786

D 1.925 1.383 1.959 0.359 1.952

E 1.384 2.672 1.401 1.477 1.422

F 1.375 2.758 1.387 1.909 1.414

G 1.446 3.856 1.488 1.064 1.504

H 1.381 2.126 1.406 0.354 1.411

I 1.755 2.392 1.715 0.058 1.714

J 1.471 2.711 1.520 0.529 1.512

K 0.734 2.801 0.709 0.700 0.714

L 0.522 1.953 0.518 1.172 0.512

M 1.179 2.700 1.139 0.784 1.148

Fig. 8. Order of elements for the third computation (problem D).

Fig. 9. Order of elements for the third computation (problem E).
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Fig. 10. Order of elements for the third computation (problem G).

Fig. 11. Order of elements for the third computation (problem H).

Fig. 12. Order of elements for the third computation (problem M).
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[16–19] and the solutions [20] for the cylinders with an

infinite length obtained by the Body Force Method, etc. are

used as exact solutions. The exact analytical solutions for

the problems (I) , (L) are known. The black points in

the figures denote the maximum stress points to which

attention was paid. Due to the symmetry, only the 1/8

domain for problems (A) , (H), and (M), and the 1/2

domain for problems (I) , (L) were analyzed. The stress

concentration factor at the black point was the averaged

value of the stress concentration factors computed from

elements neighboring the black point.

The result of the numerical experiments is given in

Table 3. The error (Error) in % is the error of the

BEM solution (BEM) relative to the exact value

(Exact value).

According to Table 3, although there are a few error

values exceeding the allowable error u; most of them are

lower than the allowable level or around it nearly.

From this fact, the method of the accuracy guarantee

method proposed here can be considered as a feasible

one.

Figs. 8–12 show the orders of elements for the

third computations for problems D, E, G, H, and M,

respectively.

5. Concluding remarks

To establish an accuracy guarantee or error estimation

method for the adaptive p method for 3D BEM, the relations

between the order of element and the analysis error was first

investigated by the fundamental numerical experiments

using thick-walled spheroids subjected to the internal or

external pressure.

On the basis of these equations, a method of

the adaptive determination of the order of element was

devised, where BEM analyses were performed twice

with different orders of elements and the necessary

order of each element was determined based on

the preceding computations. The result computed

with these orders is expected to satisfy the allowable

error.

Finally, an adaptive analysis program using

this method was developed and applied to the

analysis of various 3D elastostatic problems. The

usefulness of this method was illustrated by these

application results.
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