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The formulation of acoustic radiation from multiple vibrating bodies of arbitrary shape
by the Helmholtz integral equation is presented. A computer code was developed to calculate
the sound pressure field around an arbitrary number of three-dimensional vibrating bodies
of arbitrary shape. The near field of two dilating spheres, determined by using this code, is
presented in the form of equal pressure contours. The paper also presents a critical study of
the efficacy of the CHIEF method in acoustic radiation problems involving more than one
vibrating body.
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1. INTRODUCTION

This paper is concerned with the computation of the acoustic pressure field around an
arbitrary number of vibrating non-compact sources, having arbitrary shapes, embedded in
a homogeneous medium which is initially at rest. The analysis is based on the numerical
implementation of the exterior surface Helmholtz integral equation, SHIE, by using the
isoparametric boundary element technique. This method has been used extensively in the
numerical determination of acoustic radiation from an arbitrarily shaped single body. It is
also applicable to radiation and/or scattering problems involving more than one body, and
several papers have dealt with this case [1–6].

A disadvantage of SHIE is that it can yield only a non-unique solution when the forcing
frequency equals one of the characteristic frequencies associated with the interior of the body
[7]. Of the variety of methods proposed to eliminate the impact of this on the numerical
results, the method of Schenck, CHIEF [7], and the method of Burton and Miller [8] appear
to compete. However, as far as the present authors are aware, no paper has been published
to date reporting on the efficacy of these methods in radiation problems involving more than
one vibrating body. It is the purpose of this paper to study the efficacy of the SHIE and
CHIEF methods in multi-body radiation problems, in the vicinity of the critical frequencies,
and to present data on the near field characteristics of two dilating spheres. The study was
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motivated by the need to predict the near field of a number of non-compact noise sources
operating in free field conditions.

The numerical formulation is similar to that given in reference [9] except that the computer
code developed can cater for the presence of a number of disjointed closed surfaces in
three dimensions. Numerical results are presented in this paper, for simplicity, only for
two dilating spheres, although the main advantage of the methods considered lies in their
versatility in dealing with arbitrarily shaped bodies. The paper includes a discussion of the
effect of frequency on the near field equal pressure contours as well as the impact of the
non-uniqueness problem and the extent to which it can be remedied by the CHIEF method.

2. HELMHOLTZ INTEGRAL EQUATION FOR MULTIPLE BODIES

For a vibrating body with a boundary S and a unit outward normal n, classical Helmholtz
integral equation may be written in terms of the sound pressure amplitude p and the normal
velocity amplitude u, as

C(x)p(x)=gS

{p(y)[1G(R, k)/1n(y)]+iz0ku(y)G(R, k)} ds(y), (1)

where y is any point on S, x is any point in space, R==x−y=, i=z(−1). k denotes the
wavenumber 2pf/c where f is the frequency, c is the speed of sound and exp(i2pft) time
dependence is assumed, ds denotes a differential boundary element, G(R, k) is the free space
Green function G=exp(−ikR)/R for the Helmholtz operator in three dimensions, and z0

is the characteristic impedance of the medium z0=r0c where r0 is the density of the medium
at rest. For x in the exterior, C(x) is equal to 4p; for x in the interior, C(x)=0 and for x

on S, C(x) is given by [9]

C(x)=4p+gS

[1(1/R)/1n(y)] ds(y). (2)

If there are two or more vibrating bodies embedded in the acoustic medium, equation (1)
can be applied by taking S=S1*S2*· · ·*SB where Si (i=1, 2, . . . , B) denotes the boundary
of the ith body and B the total number of bodies.

For x on S, equation (1) is called the exterior surface Helmholtz integral equation (SHIE).
The numerical implementation of SHIE by the boundary element method gives a set of
complex algebraic equations which may be written as [10]

[E−K(f )]p=H(f )u. (3)

Here p and u are the nodal sound pressure and the prescribed nodal normal velocity vectors,
respectively. Matrices E (a diagonal matrix), K(f ) and H(f ) are of size N×N, where N is

Figure 1. Two spherical source model.
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Figure 2. Equal pressure contours of two dilating spherical sources at the z=0 plane for ka=1.
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Figure 3. Equal pressure contours of two dilating spherical sources at the z=a/3 plane for ka=1.
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Figure 4. Equal pressure contours of two dilating spherical sources at the z=2a/3 plane for ka=1.
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Figure 5. Equal pressure contours of two dilating spherical sources at the z=0 plane for ka=0·1.
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Figure 6. Equal pressure contours of two dilating spherical sources at the z=0 plane for ka=2.
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the total number of nodes. Once the surface pressure distributions have been determined
by equation (3), then computation of field pressures becomes possible by using the exterior
Helmholtz integral: that is, equation (1) for x in the exterior. Previous applications for sound
radiation froma single sphere show that equation (3) gives good resultswhen using quadratic
isoparametric elements [9, 11–13] and four-point Gaussian quadrature [12, 13].

The computer code which was developed during the course of this study has the
capability to generate equation (3), for any number of vibrating three dimensional bodies
of arbitrary shape, using quadrilateral quadratic isoparametric boundary elements and
Gaussian quadrature with up to 256 integration points. The code was written in APL
language and executed on an IBM-3090 computer. The precision of the code was validated
using the known analytical results for the single dilating sphere and also the superposition
solutions for the case of two spheres [14].

3. NEAR FIELD CHARACTERISTICS OF TWO DILATING SPHERES

Consider the problem of sound radiation from two spheres each of radius a and with
centres at distance of 4a, vibrating in phase radially with uniform normal surface velocity

Figure 7. Variation of the real part of the non-dimensional surface pressure at the nearest points of the equatorial
circles of two dilating spherical sources, computed by using SHIE, with the non-dimensional wavenumber ka.
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amplitude U0 and frequency f, as shown in Figure 1. Here, this problem is solved by using
a 24-element boundary element model for each sphere, as shown in Figure A1 in the
Appendix. Also presented in the Appendix are the local spherical co-ordinates of the 82
nodes for each sphere. Numerical integration was carried out by using 16-point Gaussian
quadrature for every element. It should be pointed out that, since the spheres are symmetrical
with respect to the x-z plane, the normal velocities of the particles in this plane vanish and
the x-z plane behaves as a rigid plane satisfying the boundary condition u=0. Therefore,
the solution of the two spherical dilating source problem includes the solution of the problem
of a single dilating sphere in a 3-D half space given in reference [15].

Figures 2–6 show the equal pressure contours in several horizontal planes for various
values of the non-dimensional wavenumber, ka. The numbers on the contours indicate the
corresponding values of the non-dimensional pressure amplitude p/z0U0.

Figure 2 shows the contours in the vicinity of the equatorial circle (in the z=0 plane) of
one sphere for a non-dimensional wavenumber ka=1. Since the sources are symmetrical
with respect to the x-z plane, the equal pressure contours will also be symmetrical with
respect to the x axis. Figures 3 and 4 give the contours in the vicinity of the circle of a sphere
at the z=a/3 and z=2a/3 planes, for ka=1, respectively. It can be seen that acoustic
pressures decrease as one moves up from the equatorial plane.

Figure 8. Variation of the real part of the non-dimensional surface pressure at the nearest points of the equatorial
circles of two dilating spherical sources, computed by using CHIEF, with the non-dimensional wavenumber ka.
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Figures 5 and 6 show the equal pressure contours at the z=0 plane, for ka=0·1 and ka=2,
respectively. The influence of the frequency on the near field pressures can be inferred by
comparing Figures 2, 5 and 6.

4. ACCURACY OF THE SOLUTIONS NEAR THE CRITICAL FREQUENCIES

The non-dimensional surface pressures of the dilating spheres were examined in a broad
non-dimensional wavenumber spectrum ranging from ka=0·1 to ka=10. The numerical
results were computed by using the surface Helmholtz integral equation (SHIE) and also
the combined Helmholtz integral equation formulation (CHIEF) [7]. The CHIEF method
consists of the over-determination of the system of equations resulting from the surface
Helmholtz integral with additional equations derived from the exterior Helmholtz integral
for the interior. CHIEF yields good results in the neighbourhood of the critical frequencies
and has received widespread use for sound radiation from single sources. In the case of a
single dilating sphere, it is customary to use a single CHIEF interior point at the centre of
the sphere [7, 9, 12]. Therefore, with two dilating spheres, CHIEF was first applied by taking
two interior points, one at the centre of each sphere.

Figure 9. Variation of the imaginary part of the non-dimensional surface pressure at the nearest points of the
equatorial circles of two dilating spherical sources, computed by using SHIE, with the non-dimensional
wavenumber ka.
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Figures 7 and 8 show the real parts of the non-dimensional surface pressure at the nearest
points of the equatorial circles computed by using SHIE and CHIEF, respectively, as a
function of the non-dimensional wavenumber ka. Figures 9 and 10 present the variation of
the imaginary parts of the same pressures with ka. Figures 11 and 12 show the real parts
of the non-dimensional surface pressure at the furthest points of the equatorial circles as
computed by using SHIE and CHIEF, respectively. The imaginary parts of the same
pressures are shown in Figures 13 and 14.

As can be seen from these figures, both SHIE and CHIEF give accurate results up to about
ka=2·5 but for greater wavenumbers, the problem of non-uniqueness begins to arise. As
is well established in the case of a single radiating body with a vibrating surface, these critical
wavenumbers in the vicinity of which the non-uniqueness manifests itself are given by
the characteristic wavenumbers of the interior problem for the same boundary with the
Dirichlet boundary condition [7]. Hence, for a single sphere, the critical wavenumbers
are ka=p, 2p, 3p, . . . for the spherically symmetrical modes and, in increasing order,
ka=4·493, 5·763, 6·988, . . . for the non-spherically symmetrical modes of the associated
interior problem. In all previous work concerned with the numerical implementation of
the integral equation formulation to the radiation from a single dilating sphere, the

Figure 10. Variation of the imaginary part of the non-dimensional surface pressure at the nearest points of the
equatorial circles of two dilating spherical sources, computed by using CHIEF, with the non-dimensional
wavenumber ka.
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non-uniqueness problem has been reported to arise only in the vicinity of the spherically
symmetrical characteristic wavenumbers, that is, p, 2p, 3p, . . . . A mathematical proof of
this has been provided by Copley [16].

In the case of sound radiation from vibrating multi-bodies, the critical wavenumbers will
be given by the union of the characteristic wavenumbers of each body [17]. The two dilating
sphere problem considered in this paper, is not spherically symmetrical and, even though
the spheres are taken to be identical, the non-uniqueness problem is thus expected to occur
around both the symmetrical and non-symmetrical characteristic wavenumbers of a
single sphere, which are given above. Indeed, it is seen in Figures 7, 9, 11 and 13 that
the non-uniqueness with SHIE occurs for the spherically symmetrical and non-
symmetrical characteristic wavenumbers. It is, however, interesting to note that, for the
smallest non-spherically symmetrical characteristic wavenumber, that is, ka=4·493, the
non-uniqueness problem does not arise.

The CHIEF method, when applied by using a single interior point at the centre of
each sphere, corrects the non-uniqueness at the spherically symmetrical characteristic
wavenumber ka=p. It does not have any corrective effect at the non-spherically symmetrical
characteristic wavenumber ka=5·763 and, furthermore, brings out the
non-uniqueness at ka=4·493 to which SHIE is insensitive.

Figure 11. Variation of the real part of the non-dimensional surface pressure at the furthest points of the
equatorial circles of two dilating spherical sources, computed by using SHIE, with the non-dimensional
wavenumber ka.
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Figure 12. Variation of the real part of the non-dimensional surface pressure at the furthest points of the
equatorial circles of two dilating spherical sources, computed by using CHIEF, with the non-dimensional
wavenumber ka.

As is well known [12], CHIEF’s performance depends on the location and number of the
interior points, but the selection of the best points is basically a trial-and-error process.
An attempt was made to improve CHIEF’s performance by changing the positions of
the interior points along the z axis. The four sets of points used were: (0, 0, 0·2; 0, 0, −0·2),
(0, 0, 0·4; 0, 0, −0·4), (0, 0, 0·6; 0, 0, −0·6) and (0, 0, −0·8; 0, 0, 0·8). None of these points
circumvented the occurrence of non-uniqueness satisfactorily around ka=4·493. After
a large number of tries with other sets of interior points, it has been found that the
non-uniqueness around ka=4·493 could be improved by using the interior points at
(0·6, 0·5, 0·4; 0·3, 0·2, −0·1).

5. CONCLUSIONS

The near field and surface pressure characteristics of two dilating spheres were examined.
The equal pressure contours of the spheres were presented for different horizontal planes
and non-dimensional wavenumbers.
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Figure 13. Variation of the imaginary part of the non-dimensional surface pressure at the furthest points of the
equatorial circles of two dilating spherical sources, computed by using SHIE, with the non-dimensional
wavenumber ka.

The surface pressure characteristics were obtained by using both the SHIE and CHIEF
formulations. In respect to the effort required for circumventing the non-uniqueness at
ka=4·493 by the CHIEF method, the best strategy for the problem under consideration
would be to use CHIEF with interior points at the centre of the spheres to correct the
non-uniqueness around ka=p and to use SHIE for the range pQkaQ2p. For kaq2p,
neither SHIE nor CHIEF are reliable because of the increased density of the critical
wavenumbers.
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Figure 14. Variation of the imaginary part of the non-dimensional surface pressure at the furthest points of the
equatorial circles of two dilating spherical sources, computed by using CHIEF, with the non-dimensional
wavenumber ka.
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APPENDIX

The local Cartesian co-ordinates of the nodes (see Figure A2) are calculated in the
computer code by the following co-ordinate transformation:

x̄=r sin U cos F, ȳ=r sin U sin F, z̄=r cos U. (A1)

Appendix table overleaf

Figure A1. Boundary element discretization of a sphere Figure A2. Spherical co-ordinates.
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T A1

Local spherical co-ordinates of the nodes
ZXXXXXXXXCXXXXXXXXV

Node U0 F0

1 0 0
2 11·25 270
3 11·25 90
4 22·5 0
5 22·5 270
6 22·5 180
7 22·5 90
8 33·75 270
9 33·75 90

10 45 0
11 45 337·5
12 45 315
13 45 292·5
14 45 270
15 45 247·5
16 45 225
17 45 202·5
18 45 180
19 45 157·5
20 45 135
21 45 112·5
22 45 90
23 45 67·5
24 45 45
25 45 22·5
26 67·5 0
27 67·5 315
28 67·5 270
29 67·5 225
30 67·5 180
31 67·5 135
32 67·5 90
33 67·5 45
34 90 0
35 90 337·5
36 90 315
37 90 292·5
38 90 270
39 90 247·5
40 90 225
41 90 202·5
42 90 180
43 90 157·5
44 90 135
45 90 112·5
46 90 90
47 90 67·5
48 90 45
49 90 22·5
50 112·5 0
51 112·5 315
52 112·5 270
53 112·5 225
54 112·5 180
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T A1—Continued.

Local spherical co-ordinates of the nodes
ZXXXXXXXXCXXXXXXXXV

Node U0 F0

55 112·5 135
56 112·5 90
57 112·5 45
58 135 0
59 135 337·5
60 135 315
61 135 292·5
62 135 270
63 135 247·5
64 135 225
65 135 202·5
66 135 180
67 135 157·5
68 135 135
69 135 112·5
70 135 90
71 135 67·5
72 135 45
73 135 22·5
74 146·25 270
75 146·25 90
76 157·5 0
77 157·5 270
78 157·5 180
79 157·5 90
80 168·75 270
81 168·75 90
82 180 0


