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This issue’s featured review by K. K. Tung is about SIAM’s Mathematics & Climate
by Kaper and Engler. This undergrad textbook should inspire students to think about
the policy choices that could be made, based on sound math and statistical model-
ing and more specific conceptual models. Also included are reviews of E’s Principles
of Multiscale Modeling, Han and Wu’s Artificial Boundary Method, Narang-Siddarth and
Valasek’s Nonlinear Time Scale Systems, Noonburg’s Ordinary Differential Equations, Paul
and Baschnagel’s Stochastic Processes, Schuss’s Brownian Dynamics, Shafarevich’s two-
volume Basic Algebraic Geometry, Shiryaev’s Problems in Probability, Shtern’s Counterflows,
Strang’s Differential Equations and Linear Algebra, and Syropoulos’s Theory of Fuzzy Com-
putation. You can count on quite a variety of opinions by our expert reviewers.

Bob O’Malley
Section Editor

bkreview@amath.washington.edu
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SIAM REVIEW c© 2014 Society for Industrial and Applied Mathematics
Vol. 56, No. 4, pp. 711–726

Book Reviews

Edited by Robert E. O’Malley, Jr.

Featured Review: Mathematics & Climate. By Hans Kaper and Hans Engler. SIAM,
Philadelphia, 2013. $59.00. xx+295 pp., softcover. ISBN 978-1-611972-60-3.

The science of climate change is complex and the field of research is expanding, in-
creasingly drawing in mathematicians and statisticians. Yet the curriculum at the
undergraduate level tends to lack material that “introduces students to mathemati-
cally interesting topics from climate science” and makes “climate issues understand-
able to readers coming from fields other than geophysics.” This timely contribution
from Kaper and Engler fills this gap and provides a textbook for undergraduates
in mathematics and statistics wishing to explore climate sciences as an application
area.

The writing style is concise and to the point. Complex subjects, such as the role
of oceans in climate, atmospheric structure and circulation, and the cryosphere, are
dealt with descriptively, with very brief but authoritative prose.

Some may say that the book is too ambitious: by dealing with so many complex
topics in climate science, from the Earth’s energy budget, the ocean conveyor belt,
sea-ice shape, the transport of carbon dioxide, and plankton and algae, to El Niño,
data inhomogeneity, and extreme events, the authors can only present these topics in
a cursory manner. I think, however, that this is intended by the authors. The book
is only meant to expose students to various interesting topics of current interest in
climate science to which mathematical and statistical tools can be profitably applied.
By showing how a few conceptual models utilizing only simple mathematics can be
used to make sense of complex phenomena, the authors demonstrate the important
role that mathematics and mathematicians can play in climate science.

The book’s presentation of mathematical theory and techniques is interspersed
among the climate topics, sometimes in separate chapters. Some mathematical topics
are treated in detail, while others are dealt with briefly and descriptively. Dynam-
ical systems theory has its own chapter and is discussed in detail, in the typical
mathematician’s definition-and-theorem format. This is followed by a chapter on bi-
furcation theory for equilibrium solutions of nonlinear differential equations in one
and two dimensions. The subsequent two chapters deal with applications: a short
chapter on the equilibrium solution of Stommel’s two-box model of thermohaline cir-
culation illustrates the possibility of multiple equilibria, bifurcation, and hysteresis.
The following short chapter on the three-component Lorenz equations gives an ex-
ample of an interesting dynamical system, using a numerical solution to show the
strange attractors; however, few of the theorems from the dynamical systems chapter
are used.

My favorite chapter is Chapter 11, “Fourier Transforms.” The chapter presents
Fourier series as a trigonometric interpolation and then proceeds to derive the dis-

Publishers are invited to send books for review to Book Reviews Editor, SIAM, 3600 Market St.,
6th Floor, Philadelphia, PA 19104-2688.
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712 BOOK REVIEWS

crete Fourier transform, leading to a discussion of the advantages of the fast Fourier
transform (FFT). The FFT is then used to analyze some sample time series, show-
ing that a different perspective can be obtained by examining their power spectra.
Correlation and autocorrelation are defined and interpreted. An excellent section on
Milankovitch’s theory of glacial cycles follows as an application, including a spectral
analysis of the forcing function and the observed response.

The chapters on statistical techniques are useful, as they are commonly used
to analyze climate time series of observation and model data. Such datasets are
nowadays freely available online, and so a student can actually apply the techniques
learned to real problems. Chapter 9 very briefly presents regression analysis, which is
then applied in Chapter 10 to the carbon dioxide data from Mauna Loa. Chapter 19
presents theorems from statistics that can be used to infer whether or not an observed
incidence of extreme events is random. Chapter 20 discusses various data assimilation
methods, including the Bayesian approach. The presentation of the statistical results
is very brief, which might be due to the perception of the authors that students
taking this course probably have already acquired these concepts from other statistics
courses.

The long Chapter 14 derives the hydrodynamics equations (partial differential
equations) governing fluid flows on a rotating sphere. These are the equations used in
general circulation models, which are supposedly the subject of the following chapter
on climate models but are not used there. Instead, the authors present arguments
for viewing such models as a dynamical system in functional spaces, resulting in an
“abstract climate model.” No further insight is gained from this viewpoint, other
than the fact that when spectrally truncated, the Rayleigh–Bénard convection equa-
tions can lead to the three-component Lorenz equations, which form a dynamical
system.

Chapter 16, on the El Niño Southern Oscillation (ENSO), returns to the “concep-
tual models” used so well in the rest of the book to explain the mechanisms behind
this quasi-periodic climate pattern that occurs across the equatorial Pacific Ocean. A
conceptual model is not derived from the governing partial differential equations, or
from first principles, but is instead argued for as being reasonable and plausible. A
recharge-oscillator model of Jin and a delayed-oscillator model of Battisti and Hirst
are presented, and the former is solved numerically. For the latter, further discussion
of Rossby wave and Kelvin wave dispersions is given but does not emphasize their
ties to the life cycle of ENSO and its observed period.

Chapter 12, “Zonal Energy Budget,” does a thorough job of deriving the energy
balance model of the longitudinally averaged Earth. In contrast to the brevity of
earlier and later chapters, each topic here is explained in detail, even including a
section on the Legendre polynomial expansion of the solutions. As was the case for
Chapter 14, this long derivation is also not made use of later. After completing
the model by fitting the model parameters to the present climate, the chapter ends.
Subsequent chapters never return to the equation derived.

In summary, Mathematics & Climate is a delightful short book at the intersection
of mathematics and climate science. It serves its purpose well as an excellent textbook
for a one-semester course, especially if the instructor has disciplinary knowledge of
the topics in climate science.

K. K. TUNG

University of WashingtonD
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Problems in Probability. By Albert N. Shiryaev.
Springer, New York, 2012. $79.95. xii+427 pp.,
hardcover. ISBN 978-1-4614-3687-4.

The author A. N. Shiryaev is a distin-
guished mathematician of the famous Rus-
sian school of probability. The present book
is a rich and comprehensive collection of
problems compiled over many years for use
in graduate courses at Moscow State Uni-
versity and other academic institutions in
Russia. These courses are generally based
on books like the author’s two-volume Prob-
ability [6], referred to as P , whose earlier
editions have been translated into English
[5]. However, Problems in Probability can
be used to aid the instruction of a variety
of courses in probability in U.S. univer-
sities and elsewhere. Although there are
frequent references to the books P , one
can for the most part easily figure out the
underlying contexts, notation, and defini-
tions without looking up these source books.
The first chapter, “Elementary Probability
Theory” reminds one of Feller’s classic [3].
It provides a host of combinatorial iden-
tities, some basic and some special, used
for solving interesting problems in finite
probability. In particular, they lead to the
derivation of the reflection principle for the
simple symmetric random walk, the arcsine
law, and the convergence of the binomial
to the Gaussian and the Poisson. Finite
(and countable) state Markov chains also
appear briefly here and more elaborately in
the last chapter (Chapter 8), “Sequences
of Random Variables that Form Markov
Chains.” This material, together with the
weak convergence theory and its applica-
tion to the convergence of random walks to
the Brownian motion appearing in Chapter
3, could be used to supplement a first grad-
uate course on stochastic processes. Such a
course is, however, generally preceded by a
basic graduate course in measure theoretic
probability following a text such as [1] or
[2]. The instructor of such a course will
find Chapters 2–5 and 7 of this book to be
of great use. Finally, the brief Chapter 6
on the L2 theory of wide sense stationary
processes contains a number of important
exercises, including several on the Kalman
filter.

It should be mentioned that many of
the exercises in the present book introduce
important topics in probability in a self-
contained manner, but the majority of the
problems test the student’s understanding
of basic concepts. Some of the problems
are relatively simple, while others are quite
challenging. Here are some examples, fo-
cusing primarily on the basic Chapter 2
(“Mathematical Foundations of Probabil-
ity Theory,” pp. 59–179).

(1) Problems 1.2.28–29 (referring to ex-
ercises 28, 29 from Chapter 1, section 2 in
P ) are on Polya’s urn scheme.

(2) Problem 2.1.26 asks for an example of
two finite measures μ1, μ2, where the small-
est measure ν satisfying ν ≥ μ1, ν ≥ μ2 is
μ1 + μ2 and not max(μ1, μ2). This prob-
lem should perhaps have been placed a few
sections later after the introduction of the
Radon–Nikodým theorem, where the fol-
lowing simple result could be obtained: If
f1 and f2 are the densities of μ1 and μ2

(with respect to some sigma-finite measure
μ, say, μ = μ1 + μ2), then ν is the mea-
sure whose density is max(f1, f2). Hence
ν = μ1+μ2 only if μ1 and μ2 are supported
on disjoint sets.

(3) Problems 2.6.84–85 introduce the so-
called ladder epochs T1, T2, . . . of a (gen-
eral) random walk Sn = ξ1 + ξ2 + · · · +
ξn (S0 = 0). That is, T0 = 0, Tk =
inf{n > Tk−1 : Sn − STk−1 > 0}, k ≥ 1.
One has to prove P (T1 < ∞) = 1 if
B ≡ ∑

1≤n<∞ P (Sn > 0)/n = ∞, and
P (T1 < ∞) = 1−exp{−B} if B < ∞. This
is an important result, essentially due to
Spitzer, with many implications (see Feller
[4, XII.7]).

(4) Problem 2.10.57. Let ξ1, ξ2, . . . be
a positive i.i.d. sequence with a (common)
density f satisfying limx↓0 f(x) = λ > 0.
Then n[min(ξ1, ξ2, . . . , ξn)] converges in dis-
tribution, as n → ∞, to an exponentially
distributed random variable with parame-
ter λ.

(5) Problem 2.10.61. Show that the
Lebesgue measure of the points in [0, 1],
such that the nth term in its continued
fraction expansion equals k, converges to
(1/ ln 2) ln[{1 + 1/k}/{1 + 1/(k + 1)}] as
n → ∞, k = 1, 2, . . . . This again is an
important basic result in the theory of con-D
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714 BOOK REVIEWS

tinued fractions, which probably belongs
more appropriately to Chapter 5 (“Station-
ary (in Strict Sense) RandomSequences and
Ergodic Theory”).

(6) Problem 4.5.9. Let Mn = max(ξ1, ξ2,
. . . , ξn), where ξ1, ξ2, . . . are i.i.d. stan-
dard Cauchy. Show that P (Mn/n ≤ x) →
exp{−1/πx} as n → ∞, for x > 0.

(7) Problem 7.12.8. Derive the Black–
Scholes formula for European-style call op-
tions with terminal payoff (ST −K)+, where
St = S0 exp{tμ+σWt} and {Wt} is a stan-
dard Brownian motion.

There are some minor typos in the text,
but none very serious.

Problems in Probability is an excellent
source of exercises for graduate courses in
probability. The exercises are diverse and
very well chosen, and include both rela-
tively simple ones testing the student’s un-
derstanding of basic concepts and ability
to apply them, as well as challenging ones
which may be assigned as longer projects
and on which the instructor may also hone
his/her expertise.

REFERENCES
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A Basic Course in Probability Theory,
Springer, New York, 2007.

[2] P. Billingsley, Probability and Measure,
3rd ed., Wiley, New York, 1995.

[3] W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1,
3rd ed., Wiley, New York, 1968.

[4] W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. 2,
2nd ed., Wiley, New York, 1971.

[5] A. N. Shiryaev, Probability, Springer, New
York, 1984, 1990 (English editions).

[6] A. N. Shiryaev, Probability. Vols. 1 & 2,
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RABI BHATTACHARYA

University of Arizona

Artificial Boundary Method. By Houde Han
and Xiaonan Wu. Springer, New York, 2013.
$129.00. viii+423 pp., hardcover. ISBN 978-
3642354632.

The theme of this book concerns the follow-
ing type of question. Consider a boundary

value problem, or an initial boundary value
problem, in an unbounded spatial domain
D. Suppose we truncate the unbounded do-
main by introducing an artificial boundary
B, which encloses a finite subdomain Ω.
Can we find a boundary condition on B
such that the original problem in D and
the new problem in Ω are equivalent? By
“equivalent” we mean that the solution of
the problem in Ω is exactly the restriction
(to Ω) of the solution of the problem in D.
Such a boundary condition is called an exact
artificial boundary condition (ABC). The
authors omit the word “exact” throughout
the book, but when referring to ABCs they
always mean exact ABCs; otherwise, they
use the phrase “approximate ABCs.” Other
names are also used in various fields of ap-
plications; for example, in geophysics it is
customary to call such a condition an exact
absorbing boundary condition (the acronym
ABC still applies). In almost all cases where
such an exact ABC can be found (except for
the 1D linear wave equation, which is espe-
cially simple) this is a global (i.e., nonlocal)
boundary condition. A typical form of an
exact ABC for a boundary value problem is

∂u

∂n
(x) =

∫
B

m(x,x′)u(x′) dx′, x ∈ B ,

which is called the Dirichlet-to-Neumann
(DtN) boundary condition because it maps
the Dirichlet datum u to the Neumann da-
tum ∂u/∂n on B. The DtN operator is also
called the Steklov–Poincaré operator, which
is the name used in this book.

The authors of this book, Han and Wu,
and also their coworkers Bao, Yu, Zheng,
and others, are among the few groups of
researchers who have done a lot of excellent
work, mostly theoretical, on this subject.
This book is a summary of their work; it is
an important contribution, and its assem-
bly in book form is beneficial to those who
would like to study the subject. In particu-
lar, the book offers several useful mathemat-
ical tools for developing and analyzing exact
ABCs, and their semianalytical and approx-
imate versions, for various types of PDEs.

It should be noted that although the book
was published in 2013, it is not up-to-date,
in that it does not present the state of the
art of ABCs in general. The field saw a true
revolution in the mid-1990s, with the devel-
opment of high-order (local) ABCs [1] and
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the perfectly matched layer (PML) [2]. A
large volume of literature exists dealing with
extensions, analysis, improvement, and ap-
plication of high-order ABCs and PMLs.
Moreover, the use of these techniques in
scientific and industrial applications today
is far wider than that of exact nonlocal
ABCs of the type studied in this book. In
addition, the book mentions work from the
1970s on infinite elements (in Chapter 6)
but ignores the much improved (and math-
ematically more correct) infinite elements
developed by Burnett and by Astley’s group
since the 1990s. I would have expected the
authors to at least mention these important
developments of the last 20 years in the in-
troduction, but the book does not cover
them at all.

What I see as another slight weakness of
this book is the fact that although the sub-
ject matter is a computational method, the
book is totally theoretical and lacks any nu-
merical examples or tests. In some parts of
the book the authors discuss discretization
methods for the problems studied, such as fi-
nite differences and finite elements, but with
no numerical demonstration or verification.
This is surprising, since the authors’ pa-
pers do include numerical examples, which
shows that they do not belong to the small
group of researchers in scientific computing
who believe that numerical verification is
superfluous.

Chapter 1 discusses exact ABCs for
second-order scalar elliptic equations: Pois-
son’s equation, the modified Helmholtz
equation and the Helmholtz equation, in
two and three dimensions. Stability and er-
ror estimates are proved for the two former
cases. I was a bit disappointed not to find
error analysis for the Helmholtz equation,
since this is the more mathematically chal-
lenging and interesting case due to the lack
of coercivity. The following three chapters
discuss exact ABCs for elastostatics and
for the Stokes problem (Chapter 2), for the
heat equation and for the linear Schrödinger
equation (Chapter 3), for the wave equa-
tion, for the Klein–Gordon equation, and
for the KdV equation (Chapter 4). Chap-
ter 5 discusses the localization of the non-
local conditions of the previous chapters,
and error estimates are provided. Chapter
6 deals with “discrete ABCs,” which are

semianalytical ABCs designed after par-
tial discretization. These are very useful
for those cases in which an exact analytical
ABC is not available, such as the case of the
elastic half-space. Chapter 7 discusses “im-
plicit ABCs,” which are boundary integral
equations on an artificial boundary. Chap-
ter 8 treats ABCs for nonlinear problems,
namely, the Burgers equation, the KPZ
equation, and the nonlinear Schrödinger
equation. The Cole–Hopf transform is used
as the main mathematical tool. Chapter
9 is unique in that it does not treat an
unbounded domain problem, but instead
problems with a geometrical singularity like
a reentrant corner and an interface joint. It
is known that the same sort of techniques
that are useful for unbounded domain prob-
lems can be applied to such geometrically
singular problems. Whereas in the former
case the unbounded domain is eliminated
by the use of the ABC, in the latter it is
the singularity region that is eliminated.

The style of writing is nice: it is rigor-
ous without being dry. The text is clear
and easy to read. The book’s format is
pleasant to the eye and inviting. The dif-
ferent chapters are quite independent, but
are written in a uniform style. Each chapter
ends with an alphabetical list of references
for that chapter, which is convenient. How-
ever, there is no subject index at the end of
the book. This is not a major deficiency ow-
ing to the very clear structure of the book’s
chapters.

In summary, this book is a useful assem-
bly of the authors’ work on exact ABCs and
related topics, which provides the reader
with a collection of mathematical tools for
the design and analysis of such ABCs. If
the authors ever publish a second edition,
I would suggest adding a chapter to dis-
cuss modern developments like PMLs and
high-order (local) ABCs, adding numerical
examples to all the chapters, and adding an
index.

REFERENCES
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al., eds., SIAM, Philadelphia, 1993,
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DAN GIVOLI

Technion, Israel

Theory of Fuzzy Computation. By A. Sy-
ropoulos. Springer, New York, 2014. $109.00.
xii+162 pp., hardcover. ISBN 978-1-4614-8378-
6.

One of the starting ideas for Zadeh’s in-
troduction of fuzzy sets was, besides the
idea that these fuzzy sets should allow for
simpler model building processes for com-
plex systems, the hope that together with
such simplifications new types of algorithms
would allow for simpler calculations.

Heuristically this proved to be the case,
but the mathematical understanding of the
complexity of computations is strongly re-
lated to recursion theory. However, such a
relationship of fuzzy sets to recursion the-
oretic considerations is far from trivial as
the standard understanding of fuzzy sets
uses the real unit interval as the structure
of membership degrees, and recursion the-
ory with reals is a notoriously complicated
matter.

As for many fuzzified notions from clas-
sical mathematics, the first ideas for fuzzy
algorithms and fuzzy Turing machines came
into consideration around 1970, but the
topic never reached the level of mainstream
interest. Nevertheless, from time to time
interesting new ideas arose to develop the
field. Thus, it is not astonishing that the
book under consideration is the first to be
strongly devoted to this topic. The author
intends to cover the basic approaches and
results and thus offers an interesting survey
of the field—a survey that has been missing
up to now.

The book’s formal considerations start,
after a very general and philosophically ori-
ented first chapter, in Chapter 2 with “A
Précis of Classical Computability Theory.”
In a quite concise manner this chapter starts

with Turing machines and Kolmogorov–
Uspensky algorithms, continues with recur-
sive functions and relations, and finishes
with some remarks on computational com-
plexity.

Similarly concise, the “Elements of Fuzzy
Set Theory” are discussed in Chapter 3, cov-
ering the most basic notions of fuzzy sets
and fuzzy relations up to a definition of
t-norms and t-conorms.

Chapter 4, “On Fuzzy Turing Machines,”
and Chapter 5 on “Other Fuzzy Models of
Computation” present the core material of
the book. They are followed by two ap-
pendices on “Computing with Words” and
on “The Rough Set Approach.” The book
closes with a well-constructed list of refer-
ences and with a subject and a name index.

Chapter 4 starts from the work of E. E.
Santos in the early 1970s, discusses its evo-
lution, and follows that line of approach
up to fuzzy Turing-W-machines. Consider-
ations of the computational power of fuzzy
Turing machines follow and lead to dis-
cussions about universal fuzzy Turing ma-
chines. The focus then moves to fuzzily
recursive sets and to effective domains and
fuzzy sets. Some final considerations on ex-
tensions to L-fuzzy sets and, very briefly, on
fuzzy complexity theory close this chapter.

Chapter 5 discusses fuzzifications of some
more nonstandard approaches to computa-
tions, partly inspired by natural phenom-
ena. Four of them form the main focus: (i)
a generalization of the idea of membrane
computing via P-systems, (ii) fuzzy labeled
transition systems, (iii) fuzzy X-machines,
and (iv) a fuzzy version of the chemical
abstract machine.

The book nicely explains the state of the
art of its field. What is missing is a criti-
cal comparison of the different approaches
and a clear evaluation of their respective
benefits, disadvantages, and problems.

SIEGFRIED GOTTWALD

Leipzig University

Basic Algebraic Geometry. Volumes 1
and 2. Third Edition. By Igor R. Shafare-
vich. Springer, New York, 2013. Vol. 1: $79.99.
xviii+310 pp., hardcover. ISBN 978-3-642-
37955-0. Vol. 2: $69.99. xiv+262 pp., hard-
cover. ISBN 978-3-642-38009-9.
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When this book first appeared (Russian
1972; English translation 1974), there was
no other overall introduction to algebraic
geometry. As the author said in his pref-
ace, “The aim of this book is to set forth the
elements of algebraic geometry to a fairly
wide extent, so as to give a general idea of
this branch of mathematics, and to provide
a basis for the study of the more specialized
literature.” His concept of “a fairly wide ex-
tent” led him to devote about half the book
to varieties over a field, followed by a short
section on schemes and then a selection of
topics concerned with the topology of alge-
braic varieties over the complex numbers,
and their relation to complex manifolds.

By the time of the second edition (1988),
many other books had appeared introduc-
ing various aspects of algebraic geometry,
but, as the author points out, none of them
held the same aim of providing an overall
view without going into too much detail.
The second edition and the present third
edition reinforce this intention, adding new
material to broaden the scope and increas-
ing the size of the book by about 40%.
Still, the author manages to adhere to his
original principle of explaining results from
the beginning with a minimum of reliance
on the machinery of commutative algebra,
topology, sheaf theory, and so forth.

We owe a great deal to the translator,
Miles Reid, himself a distinguished math-
ematician, for his careful translation into
the language of current English-speaking
algebraic geometers and for pointing out
further references to the literature in En-
glish. In his “Translator’s Note,” he gives
his own opinion of the book: it has “a well-
considered choice of topics, with a human-
oriented discussion of the motivation and
the ideas, and some sample results (includ-
ing a good number of hard theorems with
complete proofs).” He goes on to say “the
student who wants to get through the tech-
nical material of algebraic geometry quickly
and at full strength should perhaps turn to
Hartshorne’s book [1]; however, my experi-
ence is that some graduate students . . . can
work hard for a year or two on Chapters 2–3
of Hartshorne, and still know more-or-less
nothing at the end of it. . . . For all such stu-
dents, and for the many specialists in other
branches of math who need a liberal edu-

cation in algebraic geometry, Shafarevich’s
book is a must.”

Let us now look at the content of the
book in some more detail. The first part,
“Varieties in Projective Space,” is now vol-
ume one of two. The basic notions of a
variety as defined by polynomial equations
in an affine space, their rational functions,
maps, projective and quasi-projective vari-
eties, and the notion of dimension, can be
found in many books. What distinguishes
this treatment is the absence of any reliance
on results of commutative algebra, except
perhaps for Hilbert’s Nullstellensatz. Also
remarkable is the introduction at an early
stage of some important results, such as the
fact that a nonsingular plane cubic curve
is not rational, or the Grassmann variety
parametrizing lines in projective 3-space.
This avoids the potential dryness of more
formal treatments.

New material in this edition includes a
full discussion of plane cubic curves, with
the class group, the group law, and their
characterization as those nonsingular curves
for which the dimension of the linear sys-
tem is one less than the degree for every
effective divisor D on the curve.

Another major addition to this third edi-
tion is a complete proof of the Riemann–
Roch theorem for curves. The proof given
here is the old algebraic proof using dis-
tributions, improved by the use of Tate’s
theory of residues. The proof is “elemen-
tary” in the sense of not using any fancy
machinery, but (in my opinion) mysterious
in using strange definitions and construc-
tions that appear nowhere else. It is one
of those proofs where you can follow every
step, but at the end have no understand-
ing of why the result is true. I find this
disappointing, since the proof using coho-
mology and Serre duality (see, for example,
[1, Chap. IV, section 1]) is so beautiful and
so simple. However, the cohomology theory
of coherent sheaves falls outside the scope
of this book.

Volume 2, “Schemes and Complex Man-
ifolds,” corresponds to Parts 2 and 3 of
the first edition. Chapter 5 gives the defi-
nition and basic properties of schemes, and
Chapter 6 uses these notions to study ab-
stract varieties, defined as reduced sepa-
rated schemes of finite type over an alge-
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braically closed field k. This treatment of
schemes is only a beginning, avoiding, for
example, a general discussion of separated
and proper morphisms. A significant inclu-
sion here is a discussion of flat families, the
Hilbert polynomial, and the Hilbert scheme
parametrizing closed subschemes of projec-
tive space.

The last chapter of Volume 2 treats the
topology of algebraic varieties over the com-
plex numbers and some topics on complex
manifolds. For these chapters, the author
does assume some knowledge of differen-
tiable manifolds, analytic functions, and
ordinary homology and cohomology. For
the newcomer to abstract algebraic geome-
try, this discussions based on more familiar
complex manifolds will surely be helpful.
New in this third edition is also a section
on Kähler manifolds.

Overall, I find the book wonderfully put
together, and I am sure the reader will learn
a lot, either from systematic study or from
browsing particular topics. There are a few
glitches, as one might expect in such a large
book. For example, the work of Tate and
Arbarello et al. mentioned in the section
on the Riemann–Roch theorem seems to
have escaped inclusion in the bibliography.
However, what bothered me most is the
numbering of results, which is awful. In
each chapter, the theorems, propositions,
corollaries, examples, remarks, etc., each
have their own independent numbering sys-
tem, running consecutively throughout the
chapter. This makes it a real chore to track
any internal reference in the book.

REFERENCE

[1] R. Hartshorne, Algebraic Geometry,
Springer-Verlag, New York, 1977.

ROBIN HARTSHORNE

University of California, Berkeley

Nonlinear Filtering and Optimal Phase
Tracking. By Zeev Schuss. Springer, New York,
2012. $74.95. xviii+262 pp., hardcover. ISBN
978-1-4614-0486-6.

Papoulis’s books on probability and con-
trol theory have occupied the bookshelves

of electrical engineers, applied mathemati-
cians, physicists, and students of many
other disciplines for several decades now.
They offer a direct presentation of proba-
bility, statistics, and applications to signal
processing. So what can we expect that is
new from Zeev Schuss’s recent book Nonlin-
ear Filtering and Optimal Phase Tracking?

Suppose that in order to sell your cel-
lular communication start-up company for
tens of millions of U.S. dollars, you need
to convince your prospective investors that
the new and revolutionary signal tracking
method that you have designed outper-
forms all existing methods and works at
low SNRs hitherto unheard of. For exam-
ple, its mean time between failures (MTBF)
is longer than a year. Obviously, you can-
not afford to construct a physical demo
system and run it for over a year, while the
investors and their hundreds of millions dol-
lar sit idle and wait. Equally, no computer
can run a simulation of a cellular telephone
company’s traffic for a year. Here, mathe-
matical modeling, analysis, and simulation
theory come to the rescue. You can show
the investors that optimizing the MTBF
(Chapter 7) rather than the expected mean
square estimation error produces an esti-
mator that outperforms the classical phase
lock loop (PLL) with respect to the MTBF
by many orders of magnitude. For example,
it doesn’t lose lock at SNRs that are 8–12dB
lower than in the PLL. You can convince
the investor by running a short simulation
at low SNR that does not require a year to
encounter loss of lock. Once the simulation
shows the validity of the high SNR analy-
sis also at low SNR, even nonbelievers in
mathematical proofs should see the light.

The key mathematical issue here is the
asymptotic estimate of the mean time to
loss of lock (MTLL) (section 7.6), which
is an estimate of the mean first passage
time (MFPT) of noisy dynamics from an
attractor of the noiseless dynamics. The
latter blows up exponentially as the noise
amplitude tends to zero. The novelty and
the strength of the book lie in the develop-
ment of a new mathematical method for the
derivation of Zakai’s stochastic partial dif-
ferential equation (PDE) for the a posteriori
probability density function of the estima-
tion error in its Stratonovich form (Chap-
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ters 3 and 7) and of an analytical method
for its asymptotic solution at low noise.

The book explains how to derive
the Fokker–Planck equation using path-
integrals (the classical material in the first
three chapters is based on Brownian mo-
tion and Itô’s calculus). At this stage, it
is thus possible to express the probability
of not losing lock, conditioned on a priori
observations. The book explains how the
conditional MFPT can be estimated us-
ing the WKB approximation (section 4.1),
and how the WKB solution leads to a set
of stochastic equations that represent re-
alizable filters. Although the asymptotic
theory is classically used in diffusion theory
and quantum mechanics, the application
of the new methods to communications
theory resolved, among others, the malig-
nant cubic sensor problem that previously
withstood all solution efforts (section 4.2).

Another difficulty solved in the book is
the asymptotic matching of the large devi-
ations approximate solution (which is the
WKB approximation) to boundary condi-
tions. The book presents a large ensemble of
new solutions to classical problems in signal
processing and filtering theory. Graphs are
presented in color. The most original and
new methods are dispersed across different
chapters.

Chapter 1 presents the classical ele-
mentary notions of Brownian motion and
stochastic processes based on Itô’s calcu-
lus, which links them to the PDE approach,
e.g., the Andronov–Vitt–Pontryagin equa-
tion. Interestingly, Part 1.7 explains how
to construct a Markov process with a pre-
scribed spectrum based on continuous frac-
tion representation of the Laplace transform
of the autocorrelation function. The case of
the 1/f noise is analyzed in great detail.

In the next chapter, the connection be-
tween discrete and continuous stochastic
processes is made by analyzing Euler’s
scheme with a path-integral. This allows
the derivation of boundary conditions and
limit equations for probabilities and, in par-
ticular, to detect boundary layers that need
to be resolved. This is a key necessary in-
troduction to Chapter 3 on nonlinear fil-
tering, which presents the classical stochas-
tic equations for the minimal a posteriori
mean square error estimator and for the a

posteriori density or the energy functional
associated with the problem.

Chapter 4 is dedicated to the solution of
Zakai’s equation using asymptotic analysis
of PDEs. A particular case is the solution of
the cubic sensor problem, which is a bench-
mark case for nonlinear filtering that was
first posed by Bucy in 1969 and then taken
up by many.

Chapter 5, the analysis of the MTLL
in the two-dimensional PLL using the
Hamilton–Jacobi equation (HJE), is very
instructive. It shows how to use numerical
solutions of the HJE characteristic equa-
tions in the construction of the WKB ap-
proximation.

To conclude, the book presents original
and cutting-edge methods in asymptotics
(for PDEs and stochastic processes) used to
resolve classical and new questions in filter-
ing, synchronization, and tracking theory.
It presents algorithms for the analysis of
tracking systems that are not only relevant
in communications theory, but also can be
used to analyze synchrony in biological and
other systems.

DAVID HOLCMAN

École Normale Supérieure

Stochastic Processes: From Physics to
Finance. Second Edition. By W. Paul and
J. Baschnagel. Springer, New York, 2013.
$109.00. xiv+280 pp., hardcover. ISBN 978-
3-319-00326-9.

The authors, both physicists, have revised
their successful book first published in 2000.
It was based on a seminar that they held
at the University of Mainz on the uses of
methods from physics in particular sta-
tistical physics, in finance mathematics,
which is now often called econophysics.
The emphasis is on ideas and techniques
with examples and explanations rather than
proofs, but the stochastic processes are pre-
sented clearly in mathematical language,
e.g., with measure theoretical formalism,
which makes the book readable for mathe-
maticians. Its value for mathematicians, es-
pecially those who are already familiar with
the basic ideas of mathematical finance, is
in the many examples from physics, that
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provide a broad overview of the basic mod-
els and ideas of statistical physics.

The new edition contains additional as
well as revised material. In Chapter 2,
Jaynes’s treatment of probability as a form
of logic is used to judge rational expecta-
tions and to introduce his maximum entropy
principle. In addition, there is a discussion
on distributions of extreme values. Chapter
3 now includes a section on the Caldeira–
Leggett model, which allows a generalized
Langevin equation to be derived from de-
terministic Newtonian mechanics. There is
also a section on first passage times for
unbounded diffusions as an example of the
effectiveness of renewal equation techniques
and a discussion on extreme excursions of
Brownian motions. In addition, the section
on Nelson’s stochastic mechanics has been
extended to provide a detailed discussion
on the tunneling effect. Much of the ma-
terial on credit risk analysis in Chapter 5
was made obsolete by the financial crisis
in 2008 and has been appropriately modi-
fied. A major new development is the treat-
ment of nonstationarity of financial time se-
ries, with additional discussion of extreme
events in such series. Finally, the treat-
ment of microscopic modeling approaches
has been extended to include agent-based
modeling techniques, which allows corre-
lation of agent behavior and microscopic
degrees of freedom to be incorporated in
the discussions. There are six appendices
that expand on background mathematical
material.

PETER E. KLOEDEN

J. W. Goethe-Universität

Nonlinear Time Scale Systems in Stan-
dard and Nonstandard Forms: Analysis
and Control. By Anshu Narang-Siddarth and
John Valasek. SIAM, Philadelphia, 2014. $94.00.
xvi+219 pp., hardcover. ISBN 978-1-611973-
33-4.

Singular perturbation methods in control
have provided a very successful application
of many asymptotic techniques, involving
applied mathematicians and engineers. The
early work was summarized in Kokotovic,
Khalil, and O’Reilly [1], now reprinted as

a SIAM Classic. This new book has de-
veloped from the recent thesis research of
Professor Narang-Siddarth at Texas A&M
University, where Professor Valasek was her
advisor. It is less specifically oriented to-
ward aerospace applications than Ramnath
[2] and indeed, it begins with a presenta-
tion of multiple time scale phenomena quite
generally before considering design aspects
and stabilizing controls.

The standard problem consists of the ini-
tial value problem for the coupled slow-fast
vector system

ẋ = f(t, x, z, u),

εż = g(t, x, z, u),

with a small positive parameter ε. Its lim-
iting outer solution away from a thin initial
layer results when we can solve the limiting
algebraic constraint for

z = h(t, x, u),

resulting in a reduced-order control prob-
lem. These authors call the problem non-
standard when they can’t solve for z in this
way. They naturally seek ways to transform
the given problem to a standard one. The
control aspect makes the problem interest-
ing, and computed solutions for aerospace
and other examples provide a check on any
intuitive design choices made.

Not surprisingly, inner and outer (or slow
and fast) problems arise, and one naturally
seeks the composite control as the sum of
slow and fast parts. Stability hypotheses
naturally involve Liapunov functions, and
extensions with a hierarchy of several small
parameters multiplying derivatives occur.
There’s a nice overview of classical results,
including an emphasis on a role of the slow
manifold. Most significant and novel, how-
ever, is the treatment of nonstandard exam-
ples. This is very worthy of further develop-
ment, regarding both theory and practice.
The authors deserve our thanks for their
successful and provocative developments.

REFERENCES

[1] P. Kokotovic, H. K. Khalil, and
J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and De-
sign, Academic Press, London, 1986.
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[2] R. V. Ramnath, Multiple Scales Theory
and Aerospace Applications, AIAA Ed-
ucation Series, Reston, VA, 2010.

ROBERT E. O’MALLEY, JR.

University of Washington

Ordinary Differential Equations, from
Calculus to Dynamical Systems. By Vir-
ginia W. Noonburg. The Mathematical Asso-
ciation of America, Washington, D.C., 2014.
$60.00. xiv+315 pp., hardcover. ISBN 978-1-
93951-204-8.

This book has the traditional outline of a
first course in ODEs: Introduction, first-
order equations, second-order equations,
linear systems, geometry of autonomous
systems, and Laplace transforms. Overall,
there are lots of pictures of solutions. Stu-
dents are encouraged to use computer alge-
bra and numerical methods. Examples (and
projects) coming from easy-to-comprehend
applications are common, and complicated
solution techniques aren’t avoided when
needed. Readers, in keeping up, will learn
a lot that will be useful elsewhere.

There’s particularly good coverage of
beats and resonance, phase plane pic-
tures, the matrix exponential (and its sim-
plicity compared to corresponding eigen-
value/eigenvector representations), bifurca-
tion, limit cycles, and the Laplace transform
(which many authors make so simple that
it provides no added value).

The writing is clear, the problems are
good, and thematerial is well motivated and
largely self-contained. Some previous ac-
quaintance with linear algebra would, how-
ever, be helpful.

In summary, this new book is highly rec-
ommended for students anxious to discover
new techniques.

ROBERT E. O’MALLEY, JR.

University of Washington

Differential Equations and Linear Alge-
bra. By Gilbert Strang. Wellesley-Cambridge
Press, Wellesley, MA, 2014. $86.00. x+502 pp.,
hardcover. ISBN 978-0-9802327-9-0.

There’s no doubt that Gilbert Strang is a
master teacher and an enthusiastic evan-

gelist for his perceptive vision of where
applied math should be headed. After a
half century and ten editions of Boyce and
DiPrima, there’s a pile of reasons (and
ways) to change the typical first course in
differential equations. One good idea is to
combine that course with one on linear alge-
bra, which occurred quite some time ago to
Kreider, Kuller, Ostberg, and Perkins and
to Hirsch and Smale, among others. Now,
however, we have MATLAB and Maple,
the singular value decomposition, and the
fast Fourier transform! Some experimen-
tation with technology and computing un-
covers the practical importance of differ-
ential equations. Students tend to learn
the method of Frobenius and about specific
special functions later, perhaps encounter-
ing them in a course in engineering, biology,
or finance. They ultimately also learn that
nonlinearity must be faced. This is hinted
at by the book’s attractive cover illustra-
tion (by two artistic SIAM staff members),
which relates pictures of the Lorenz attrac-
tor from a Portuguese grad student.

As you’d expect, the emphasis here is
linear differential equations with constant
coefficients. Honestly, there aren’t many
variable coefficient ODEs that we can han-
dle analytically, though it is certainly fun
to solve one. Numerical methods for ini-
tial value problems are, admittedly, very
successful and the resulting portraits pro-
vide immediate understanding of solution
behavior. Moreover, the powerful under-
lying ATA philosophy employed carries
over to using eigenvalues and eigenvec-
tors to solve boundary value problems for
Laplace’s equation and other partial differ-
ential equations, analytically and via finite
differences. Most sophomores would not
have realized this without Strang’s insis-
tence. Using Fourier series and Fourier and
Laplace transforms brings the focus success-
fully back to the classical syllabus. Mean-
while, however, one has figured out many
matrix decompositions, how to use delta
and transfer functions, and has understood
critical ideas like stability and stiffness. The
exercises, which include challenge problems,
look interesting, and extensive backup re-
sources from MIT websites are available.

As with Strang’s linear algebra books,
now in their fourth edition, this text is
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destined to have a big impact on differ-
ential equations courses and applied math
education. Its conversational presentation,
breadth, and provocative problems will even
appeal to students, who typically read lit-
tle of the book assigned. Those who teach
differential equations should definitely give
Strang’s approach serious consideration.
Once again, he’s making us think!

ROBERT E. O’MALLEY, JR.

University of Washington

Brownian Dynamics at Boundaries and
Interfaces: In Physics, Chemistry, and Bi-
ology. By Zeev Schuss. Springer, New York,
2013. $79.99. xx+322 pp., hardcover. ISBN
978-1-4614-7686-3.

The random movement of ions and mole-
cules caused by collisions between them is
known as Brownian motion. Traditionally,
the mathematical theory of Brownian mo-
tion has been used to describe chemical
kinetics and the transport of molecules in
physical systems. However, chemical kinet-
ics is present everywhere in biological sys-
tems. For instance, many physiological pro-
cesses relate to the diffusion of calcium ions
and the activation caused by the subsequent
binding of the ions to receptors. This book
uniquely combines an introduction to the
mathematical theory of Brownian motion
with applications to chemical kinetics, pri-
marily in biology and physiology.

The author makes a special effort to em-
phasize the difference between two distinct
notions of Brownian motion. “Mathemati-
cal Brownian motion” is a Wiener process,
W (t), that can be thought of as a random
walk for which steps in time and space are
infinitesimally small. “Physical Brownian
motion” refers to the Langevin description
of a particle in which the displacement of
the particle, call it x(t), satisfies an equation
of the form mẍ(t) + λẋ(t) = Ẇ (t).

In the limit of infinite damping the
Langevin description becomes a Wiener
process, and so in certain situations a
Wiener process provides a useful approx-
imation to the motion of a Langevin par-
ticle. Mathematically, this approximation
is convenient as it reduces the number of

dimensions that we have to work with by
one. However, there are undesirable physi-
cal consequences. In particular, suppose a
Wiener process crosses a threshold value at
some time T . Then the process also crosses
the threshold value at infinitely many other
times within any open time interval contain-
ing T (with probability 1). This contrasts
with how we expect particles to behave and
has important consequences in biological
applications where molecules cross mem-
branes or hit the boundary of some compo-
nent of a neuron.

The first half of the book concerns es-
sential mathematical theory. This centers
around stochastic differential equations.
The book assumes no prior knowledge
of stochastic differential equations and so
begins by introducing Wiener processes,
stochastic integrals, and Ito’s formula,
before progressing to the Fokker–Planck
equation, numerical methods, and vari-
ous aspects of first passage problems. The
reader will require background in ODEs,
PDEs, and statistical theory. Relative to
other textbooks on stochastic differential
equations, a large amount of material is
covered in a short space. For this reason,
on one hand the first half of the book consti-
tutes a wonderfully useful reference, but on
the other hand I feel it would be somewhat
hard for a novice to learn from, particularly
as the very first section is technical and
heavily notational.

The second half of the book concerns ap-
plications. Stochastic differential equations
have long been applied to problems in fi-
nance, but here the theory is applied to
problems that will be familiar to applied
mathematicians working in mathematical
biology. For instance, between neurons,
molecules look to bind to receptors that
are spread sparsely across a surface. Math-
ematically, this is a problem of “narrow
escape” (of the molecules to the receptors)
and the author devotes two out of the eight
chapters of the book to this topic. An-
other application is a chemical reaction in
which two reactants originate in different
compartments of a vessel. In the book it is
carefully shown how the reaction rate can
be interpreted as the principal eigenvalue
of a first passage problem.D
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Overall, this a unique and valuable book.
It has been written with diligence and it is a
pleasure to see that it appears to have been
carefully edited. The writing is accurate
and highly detailed, but is perhaps some-
what terse. Exercises are included through-
out the book, particularly relating to the
mathematical theory. The book will be ex-
tremely useful to both mathematicians and
biologists/physiologists, etc., who work at
the interface of these two subjects.

D. J. W. SIMPSON

Massey University, New Zealand

Counterflows: Paradoxical Fluid Mechan-
ics Phenomena. By V. Shtern. Cambridge Uni-
versity Press, Cambridge, UK, 2012. $135.00.
xiv+470 pp., hardcover. ISBN 978-1-107-
02759-6.

Despite great advances in analysis and in
computational power, understanding even
simple fluid flow remains a challenge, and
accurate description of complex fluid flow
is invariably difficult and, for many flows,
still impossible. Fluid mechanics is one of
the most complex and fascinating of phys-
ical sciences, dealing with structures that
are subtle, intricate, beautiful, and elegant
in appearance and regularly visible to us
on a great range of scales. It is a pleasure
to welcome a new book that seeks to shed
light on structures within complex laminar
fluid flows.

Why are fluid flows so complex and so
difficult to describe, or, as the title sug-
gests, paradoxical? Consider a cubic me-
ter of water, 103 kgm, or a little over 50
kMol. It will contain roughly 3× 1028 wa-
ter molecules; suppose we approximate this
as 1027 molecules and imagine them frozen
in place in a regular lattice for just an
instant in time. Picture this lattice of wa-
ter molecules and imagine a rule placed
along one edge. There would be roughly
109 molecules set along the rule, so an in-
termolecular spacing of order 10−9m. At
that length scale, you would see individ-
ual molecules, but now start to increase
the length scale and consider when will you
cease to “see” individual molecules; perhaps
when increasing by two orders of magnitude

you might still discern individual molecules,
but increase by three orders of magnitude
and all you will see is a continuum. Thus,
the cubic meter of water might be approxi-
mately modeled as a continuum at 10−6m,
some six orders of magnitude smaller than
the original scale. In larger scale applica-
tions, for example, an oceanographic simu-
lation, this would be nine or more orders of
magnitude smaller than the scale of inter-
est. To compound the complexity, dynamic
structures which originate at a molecular
scale must propagate through nine or more
orders of magnitude of length scales to pro-
duce structures at a global scale: in a fluid,
neighbors are transitory partners (particles
starting close together are not constrained
to remain neighbors, nor are flow struc-
tures at any scale so constrained), so that
structures at the small scales do not neces-
sarily propagate to larger scales in a unique
way, leading to the possibility of multiple,
but different, flow structures for the same
apparent global conditions.

This is one of the key features of fluid me-
chanics: we can impose symmetry or struc-
ture at a global level, but pass down to
the smallest scale where we do not have
a continuum and that symmetry or struc-
ture does not exist; inherent asymmetry
at the finest scales can feed back through
a long chain of length scales to produce
flows that contrast with or appear para-
doxical compared to any imposed global
symmetry or structure. The really surpris-
ing outcome is that for many situations, the
fine scale asymmetric motions pass through
the length scales in such a way that asym-
metry is lost and symmetry restored, so
that, remarkably, there may be a unique or
only a finite number of flow outcomes at
a global level despite the underlying asym-
metric structures starting at the molecular
scale. It is the case that in most practi-
cal situations, with a high ratio of inertia
to viscous forces, nonlinear interactions be-
tween different flow scales are so intense
that there is a multiplicity of flow outcomes
at the global scale, reflecting the existence
of asymmetries on small scales, and we de-
scribe the flow as turbulent. This range
of scales shows just how computationally
difficult simulation will be when fine scaleD
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interactions are the source of global scale
structures. This book deals with memb-
bers of the class of flows which are well
ordered or structured on a global scale, and
so laminar, but where fluid motion is in
some sense not the straightforward inflow
here and outflow there. Some of these flows
have unique outcomes, but also have coun-
terintuitive structures, while others fall into
the class where there can be multiple (but
only a few) outcomes on the global scale; all
are remarkable and interesting fluid flows.
The focus of the book is a demonstration
of how analysis (usually some variant of a
similarity formulation) can still play a role
in our understanding of complex fluid flows.

The book is, after the first introduc-
tory chapter, organized into thirteen further
chapters. The starting point is conical jets,
for which notation for a transformed frame-
work is set out with some examples. From
these relatively simple flows, the subsequent
chapters move on to flows with swirl, with
examples from both experimental observa-
tions and analysis. Swirl adds a layer of
complexity and interest, and the examples
considered bring into play ideas from bi-
furcation theory and stability theory and
range from swirling jets above a plane and
application to tornadoes, whirlpools, and
cosmic jets, with clear modeling, through
to reduction to lower-order systems of equa-
tions and asymptotic analysis, used to bring
out features in these flows.

The next set of flows are related to swirl
in cylindrical devices. Again, the frame-
work is well set out, and experiments and
analysis go hand-in-hand in describing how
these flows break down, which provides an
excellent overview of them.

The scene then moves to the most com-
monly observed “counterflow,” that where
separation occurs. The focus of this section
begins with Jeffrey Hamel flow and then
moves across a whole range of interesting
plane flows including spiral vortices, their
stability, and various jet-like flows before
turning to spatially conical flows and in-
teresting experiments related to Marangoni
flows, with a continuous interplay between
observation and analysis. This is followed
by a short chapter on modeling temperature
distribution in conical similarity jets.

Having introduced temperature as an ad-
ditional flow variable, the author moves to
buoyancy effects in conical jets where, as in
previous chapters, the emphasis is on con-
sidering flows where analysis can enhance
understanding. Here the flows considered
range from simple buoyant jets, to a model
for free convection near a volcano, to con-
vection in a perfect gas.

One experimental effect observed in ro-
tating flows is the formation of an internal
recirculation “bubble” about the axis of ro-
tation and, at higher rotation rates, the
breakdown of this single recirculation, or
vortex, into more complicated structures.
This provides material for a tremendously
interesting chapter showing not only many
experimental results but also how modeling
can help with control of vortex breakdown
in these flows.

In the penultimate chapter the author
turns to flows where magnetic effects can be
included, and again provides a good intro-
duction to this area and gives a brief frame-
work for flows where modeling is possible.

The final chapter, on stability of coni-
cal flows, might very well have more natu-
rally appeared earlier in the book, but even
though it stands a little alone at the end, it
is a readable and good introduction to this
topic.

This book is a fine addition to the litera-
ture on fluid dynamics. The emphasis on ex-
amining flows for which we are able to carry
out some theoretical work means that the
majority of flows considered belong to a sub-
set where the analysis can be set in a simi-
larity framework. Hence, there are many as-
pects relating to separation that are not con-
sidered, particularly when boundary layers
become important or when multiple spa-
tial structures are needed to adequately un-
derstand, for example, the boundary layer
structure at a separation point on a wall;
nevertheless, the weaving of experimental
description with analysis is well worth read-
ing. This book has material that should
interest most fluid dynamicists and should
be an accessible source of examples against
which numerical simulations can be tested
for those involved in computing fluid flows.

IAN SOBEY

Mathematical Institute, Oxford
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Principles of Multiscale Modeling. By
Weinan E. Cambridge University Press, New
York, 2011. $80.00. xviii+466 pp., hardcover,
ISBN 978-1107-09654-7.

Classical mathematical models employing
continuum mechanics and differential equa-
tions have had a long history of successfully
describing macroscopic properties in ele-
mentary physical systems. However, prob-
lems where such basic models are insuffi-
cient are also ubiquitous. A few types of
problems sensitive to structural details on
smaller scales can be solved with techniques
such as matched asymptotic expansions
and homogenization theory, but these ap-
proaches have limitations. For many mod-
ern problems in chemistry, physics, ma-
terials science, and other emerging areas,
strong coupling between effects at different
scales (“multiscale”), with each scale poten-
tially needing fundamentally different types
of models (“multiphysics”), has been a long-
standing challenge and calls for a different
overall modeling approach.

The author of the current book is a lead-
ing researcher who has a track record of
strong contributions to numerical analysis,
fluid dynamics, partial differential equa-
tions, and other areas. He was also a
member of the founding editorial board of
SIAM’s journal Multiscale Modeling & Sim-
ulation, and his book now gives an author-
itative introduction and overview of key
methods in this very active and growing
field.

The preface gives a clear and accessible
overview of the hierarchy of physical mod-
els, starting from quantum mechanics at
the bottom scale, then moving up to molec-
ular dynamics, kinetic models, and finally
continuum mechanics at the largest scales.
The author also emphasizes that develop-
ment of effective computational methods
is essential in making advances on multi-
scale problems. Reflecting this, the author’s
classification of problems into “Type A”
(with spatially isolated microscale features)
and “Type B” (with microscale effects dis-
tributed throughout) occurs as part of his
description of how computational strategies
for these problems differ. While a sizable
portion of the book focuses on numerical

methods, this is not a book on numeri-
cal analysis. The presentation is primarily
aimed at building up to the current state
of the art in designs for robust and efficient
multiscale scientific computing.

Before the new computation strategies
are addressed in full, several chapters es-
tablish the background for readers. Chap-
ter 2 gives a self-described “crash course”
in classical and modern analytical meth-
ods for multiscale problems. This includes
matched asymptotics, averaging, WKB, ho-
mogenization, and multiscale expansions
on the classical side, with renormalization
group analysis, stochastic simulation algo-
rithms, and the Mori–Zwanzig formalism
for modern methods. The author has set a
good balance between “precision” and “ac-
cessibility” that makes the material concise
but still captures the essential elements.
Good illustrative examples are briefly pre-
sented and, as in later chapters, exten-
sive background references are provided for
readers wishing to study any of these topics
in greater detail.

Chapter 4 similarly gives a concise pre-
sentation of the four fundamental levels of
physical models mentioned in the preface
(continuum, molecular, kinetic, and quan-
tum descriptions). The author highlights
that the smaller-scale physics is the direc-
tion needing further development. Conse-
quently, quantum mechanics is given the
most comprehensive review, covering the
classic tight binding approximation through
to Kohn–Sham density functional theory.

Analogous to Chapter 2 but on the com-
putational side, Chapter 3 provides an ac-
celerated overview of classical multiscale nu-
merical methods. These methods, including
multigrid, domain decomposition, adaptive
mesh refinement, and the fast multipole
method, are limited by the linear growth of
computational workload with the resolution
of the finest-scale structures. The modern
methods that the book ultimately presents
circumvent this by exploiting separation of
scales to efficiently solve different physical
models appropriate to each scale and de-
veloping good strategies for coupling and
exchanging information between scales.

Chapter 5 sets the stage for the later,
more computationally intensive multiscaleD
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problems by first giving examples where
multiscale analysis can yield improved con-
tinuum models for Type A and B problems.
In particular, three fundamental problems
where molecular dynamics affect the con-
tinuum models are discussed: constitutive
properties of polymeric fluids, nonlinear
elasticity of solids, and moving contact lines
at the edges of spreading fluids. The next
two chapters address the current methods
for computing Type B and A problems,
respectively. The detailed presentation of
the approach developed by the author, the
heterogeneous multiscale method (HMM),
and how to make coupling between scales
“seamless,” make Chapter 6 the heart of the
book. The chapter is also enriched by its
discussion of how the computational strat-
egy underlying the HMM compares against
other current approaches (extended multi-
grid and equation-free methods).

Domain decomposition and other adap-
tive multiscale computational methods for
Type A problems are illustrated in Chapter
7 in the context of three physical systems
(shocks in gas dynamics and the problems
of defects in solids and motion of contact
lines in fluids that were introduced earlier).
The following three chapters develop as-
pects of the HMM further for other classes
of problems. Chapter 8 compares the HMM

to other forms of multiscale models for fi-
nite element methods for elliptic partial dif-
ferential equations. Chapter 9 focuses on
modeling of evolutionary problems having
multiple temporal scales: stiff ODE sys-
tems and stochastic simulations for chem-
ical reactions and epidemiological models.
Further aspects of stochastic processes are
examined in the context of rare events and
transition state theory in Chapter 10.

The book is a sophisticated introduction
to the field and expects readers to arrive
with a solid background in many of the
ingredients that are involved in construct-
ing multiscale models; nevertheless, it pro-
vides a very valuable perspective on current
methods. While the classes of problems ad-
dressed cover only a particular range of
applications, the book helps to bridge the
gap between classic analytical models and
traditional numerical methods and the new
approaches needed for the current challeng-
ing open problems. Factoring out its length,
I’d compare its presentation of multiscale
modeling with the style of and comprehen-
sive overview given in some of the best
survey articles of other fields appearing in
SIAM Review.

THOMAS P. WITELSKI

Duke University
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