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Integral Equations without a Unique Solution can be made
Useful for Solving some Plane Harmonic Problems f

S0REN CHRISTIANSEN %

Institute of Technical Mechanics, The Technical University of Aachen,
D-51 Aachen, The Federal Republic of Germany

[Received 21 August 1973]

Using Green's third identity an integral equation for a two dimensional harmonic
problem is derived. For a particular exceptional geometry the integral equation does
not have a unique solution but by applying Green's third identity a supplementary
integral condition is derived. When the integral equation and the integral condition are
solved simultaneously we obtain always a unique solution. The procedure is demonstrated
by some numerical examples.

1. Introduction
IN CONNECTION with some problems within electrochemical machining (ECM)
(Rasmussen & Christiansen, 1973) one encounters a two dimensional potential
problem in a doubly-connected region. The boundary conditions are very simple, but
this is not the case with the form of the boundary curves. In such a case it seems best
to use an integral equation method, namely the integral equation which is derived here
(Section 2). In some exceptional cases this integral equation does not have a unique
solution; this surprising fact can be shown by quite elementary means (Section 3).
The integral equation is derived using Green's third identity which is considered
(Section 4) in order to find whether it also has surprising properties. An elementary
investigation (Section 5) shows that this is so. When these surprising facts are traced
back to Green's third identity, we solve (Section 6) the problem by considering the
identity more closely and derive a supplementary condition which the solution of the
integral equation has to satisfy in the case when it is non-unique. The supplementary
condition can be combined with the integral equation (Section 7) also when it is
unnecessary. By means of numerical examples it is demonstrated (Section 8) that if
the integral equation is solved without the supplementary condition then the results
are grossly wrong, while the addition of the supplementary condition, which is easy to
do, effectively eliminates the exceptional geometry. Finally the results are discussed
(Section 9).

2. Derivation of the Integral Equation
Let F o and I \ be two plane, simple, and closed curves without double points. The

exterior curve F o surrounds the interior curve r \ . They do not touch each other. The

t A very short version of this paper has been presented on 4 April 1973 the Scientific Meeting
of "Gesellschaft fur Angewandte Mathematik und Mechanik" (GAMM), which was held in Munich
(Germany): cf. Christiansen (1974).

% On leave from: Laboratory of Applied Mathematical Physics, The Technical University of
Denmark, DK-2800 Lyngby, Denmark.
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144 S. CHRISTIANSEN

ringshaped domain between the two curves is denoted by D. Here the following two
dimensional potential problem is given: We seek a function u which satisfies

AM = 0 in D (2.1)

with the boundary conditions
u = u0 (a constant) on Fo , (2.2a)
u = ul (a constant) on F j . (2.2b)

See Fig. 1.

FIG. 1. An external curve To with the potential u0 and an internal curve Fj with the potential ti\.
The direction of the normals to both curves are inwards to the ring-shaped domain.

For solving this problem an integral equation of the second kind can be used
(Mikhlin, 1964, Section 31), but due to the multi-connectivity special problems come
up. Furthermore the unknown of the integral equation does not have a simple con-
nection with the normal derivative of u on the boundaries F o u Tu which in the
physical problem considered is of particular interest.

However we shall here—by quite elementary means—derive an integral equation of
the first kind where the unknown is equal to the normal derivative just mentioned.

The basis for our derivation of the integral equation is Green's third identity
(Courant & Hilbert, 1962, pp. 256-257). It expresses the value of an harmonic function
M at a point r' in a domain by an integral along a curve F enclosing this domain, where
F is simple and consists of a finite number of smooth curves:

^ J ds = (2.3)

Here d/dv indicates differentiation with respect to r in the normal direction inward
from T.

As r we here choose F o u F ' u Tt u F", where F' and F" are two closely spaced
parallel curves connecting F o and F t . Since u is harmonic in the ringshaped domain D,
the contribution of the integral along F' u V is zero, and (2.3) can be used with
F = F o u Tu and r' e D. Application of the boundary conditions (2.2), and the fact
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INTEGRAL EQUATIONS 145

that

I — ln|r—f'| ds = < > , f' e D

gives us

uo + i f ln |r-F| ^ ( f ) ds s u(f'), r' e D.
2 7 tJr0ur, "3v

In this identity the point r' is now moved to either of the curves. The limit process is
also carried out inside the integral, but this does not give rise to difficulties since there
is only a logarithmic kernel. Now using (2.2)

r' -» r0 e F o => w(r') -» w(r0) = u0

r' -* r0 e F t => u(i') -> u(f0) = uy

the following integral equation is obtained

f
Jr

j (2.4)
r0ur, ^ ( M U ) r e T J

where the function i]/ is

iKr) = j - (f) (2.5)

where d/dv denotes differentiation with respect to the integration point r in the normal
direction of Fig. 1.

For general Dirichlet boundary conditions a similar integral equation is known
(Jaswon, 1963, pp. 28-29), but in this case it is not possible to identify the unknown
as we have done here (2.5). This identification is essential for our practical application
of the integral equation. Therefore we have carried out the derivation.

3. Non-uniqueness of the Solution
The Dirichlet problem defined in (2.1) and (2.2) has a unique solution (see e.g.

Muschelischwili, 1965, III A). But the corresponding integral equation (2.4) does not
always have a unique solution: there exists namely always an exceptional case where
(2.4) does not have a unique solution. This exceptional case depends solely on the
exterior curve Fo , in that for a given shape of To there exists a particular magnitude of
r 0 , where (2.4) does not have a unique solution (Jaswon, 1963, pp. 27-29).

This—somewhat surprising—result can be shown convincingly in the case when
the curves F o and Fx are two concentric circles Co and Cl with radii c0 and cu

respectively. Due to the symmetry the unknown will attain constant values on each of
the two curves; we denote the values by il/0 and \}/u respectively. The equation (2.4)
is then transformed to

\l/0 ln|r-ro | ds + t/^ ln|r —ro| ds = 0; r0 € Co,
J Co J Ci

\j/0 ln |r-fo | rfs + iAi l n | r - r o | ds = 2TI(M 1 -M 0 ) ; roeCy.
J Co J Ci

Introducing the arc-parameter descriptions

Co:ds = cod9o, C1:ds = cld91
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146 S. CHRISTIANSEN

gives

\I/Oc0\ l n p d 0 o + ^ i c i lnpd0! = O; r0 e C0,
Jo Jo

^ o c o l n p ^ o + ^ i C ! inpdOi = 2TI(U1-M0); r o e C , ,
Jo Jo

where p = |r—ro|. Here the integrals can be evaluated in closed form using (A.3)
giving the following system of two linear algebraic equations with the unknowns ^ 0

and i/^:
ipoco In Co + ^iCi In c0 = 0 (3.1a)

The determinant of this system is
A = coct \n(cjco) In c0.

It is seen that A = 0 if and only if c0 = 1 independent of cx; co> c t > 0. Thus it is
solely (the radius of) the exterior curve which determines whether the exceptional
geometry occurs, in which case the solution \j/0 cannot be determined uniquely.

About non-uniqueness for integral equations for two dimensional potential problems
the following can be said.

(a) Muschelischwili treats the Dirichlet problem (1965, IIIA) and shows that by
solving such problems by means of integral equations with logarithmic kernel there
always appears an exceptional case ("Ausnahmefall") where the integral equations
break down (ibid., Section 65, pp. 239-241).

(b) Jaswon (1963, p. 27) has shown that for a given curve-shape there will always
exist a particular curve-magnitude, where difficulties will occur in connection with
the integral equations of the first kind with logarithmic kernel.

(c) Harrington et al. (1969) have empirically found that numerically difficulties
appear if the boundary curve is a circle with radius equal to one, but no difficulties
were observed in connection with curves other than circles (ibid., Section 4, p. 1717,
right column). The reason is possibly that with a circle the quadrature error in trans-
forming the integral equation into a set of linear algebraic equations is small, while
this error is greater when other curves are considered. The greater quadrature error
disturbs the picture and may well camouflage the singularity.

(d) Hayes & Kellner (1972) have very thoroughly investigated the integral equations
for solving plane potential-problems, and they have shown that the integral equation
can have an eigenvalue equal to zero, if the transfinite diameter of the considered
boundary curve is equal to one. For a doubly connected region it is the transfinite
diameter of the exterior boundary curve which is crucial (ibid., Section 5).

On "transfinite diameter" or "exterior (mapping) radius", see e.g. P61ya & Szego
(1931, Section 1; 1951) and Hille (1962, Sections 16 and 17). We denote the transfinite
diameter by d. For a circle with radius c (Polya & Szego, 1931, p. 8):

circle: d = c, (3.2a)
which shows that the exceptional case appears when c = 1, in accordance with the
circle-example given above. For use in Section 8 we notice that for an ellipse with
semiaxes a and b (ibid., p. 9):

ellipse: d = i(a+b). (3.2b)
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INTEGRAL EQUATIONS 147

The exceptional geometry gives rise to practical difficulties. In the references cited in
(a), (b) and (d) above it is recommended to avoid the difficulties simply by changing
the scale of the given geometry so that the curve is away from the critical magnitude.
But nothing is said there about the value of the critical magnitude for a given shape
of the curve, and if the critical magnitude were known nothing is said about whether
it is necessary to keep a certain "security-distance" from the critical magnitude.!
By this we mean that from a theoretical point of view there is a particular critical
magnitude, but from a practical-computational point of view the question arises as to
whether there is a certain zone where the magnitudes are more or less critical and, if so,
what is the size of this zone? Further there are some cases (Rasmussen & Christiansen,
1973) where one has to consider a series of curves with different magnitudes which
makes a choice of scaling troublesome.

4. Green's Third Identity
The integral equation (2.4), derived by means of Green's third identity, has some

strange properties, i.e. an exceptional geometry exists. Therefore we shall here
consider Green's third identity more closely to find whether the identity has similar
characteristics.

Let F be a plane, closed, and simple curve, which is smooth, i.e. which has a
continuous tangent at each point. Then for an harmonic function, «(r), depending
upon two space variables, r = (x, y), Green's third identity (Courant & Hilbert, 1962,
pp. 256-257) states that

fO-«(r'),r' outside F | (4.1(0))
]-(r)G(r',r)-u(f)-(r',r)[ds = ]i-M(r'),r' on F , (4.1(i))

JrL J \l-u(f'),f\ inside rJ (4.1(1))
where the elementary solution of the equation AM = 0 in two dimensions is

G(r', ?) = -!-In- , (4.2a)
2n p

P = |r-r ' | . (4.2b)
Here by d/dv we mean differentiation with respect to r in the direction of the outward
normal to the curve F at the point of integration r on F.

Under the sign of integration in (4.1) appear the values of u and du/dv on F; if the
correct corresponding boundary values of u and du/dv are known everywhere on F,
then the value of u everywhere inside F can be computed by means of (4.1(1)). When
Green's third identity is used as a basis for derivation of integral equations (or
functional equations), one should at this stage pose the following "opposite" question:
can (4.1) be considered as a compatibility equation which (in all three regions)
connects the boundary values of u and du/dv ? The answer is divided into three parts.

Case (0): r' outside F, i.e. (4.1(0))
This formula gives a (not quite obvious) connection between the boundary values

which has been used by Kupradze for deriving functional equations (1963, Ch. VII,

t Based upon empirical-numerical investigations Harrington et al. (1969, Section 2, p. 1715)
recommend applying a scale-factor, expressed by the maximum distance between two points on the
boundary curve.
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148 S. CHRISTIANSEN

Sections 16-17; 1965, Ch. X, Sections 15-17) or the method of generalized Fourier
series (1965, Ch. X, Sections 20-38; 1969, Section 2).

Case(i):i' onT, i.e. (4.1(i))
This formula—Green's Boundary Formula—gives the clearest connection between

the boundary values, and it has been used for the derivation of integral equations to
solve the mixed boundary value problem (Jaswon, 1963, pp. 29-30; Bhargava &
Saxena, 1971, p. 248). Specifically a Dirichlet-problem (u prescribed) can be solved in
that du/dv becomes the unknown in an integral equation of the first kind with
logarithmic kernel; cf. the problem of Section 2. Further a Neumann-problem
(du/dv prescribed) can be solved in that u becomes the unknown in an integral equation
of the second kind. Such an equation appears by solution of Saint-Venant's torsion
problem (Sokolnikoff, 1956, Sections 34-35) by means of the harmonic "warping
function" or "torsion function". This integral equation can be solved numerically
(Jaswon & Ponter, 1963; Kandler, 1967).

Case (1): F inside T, i.e. (4.1(1))
This formula can be used in the following way to establish a connection between

the boundary values. Introduce two "arbitrary" functions as "boundary values" for
u and du/dv in (4.1), evaluate the integral—which we denote by/(r')—expressed by the
two introduced functions, determine the limiting value:

lim f(f'X
f' -» roer

and formulate the requirement that this limiting value is equal to the value (in the
point r0) of the "arbitrary" function u, which was introduced into (4.1). This gives
rise to a "connection" between the two "arbitrary" "boundary-value" functions u
and du/dv. This last way of deriving compatibility equations is the most complicated,
but it seems to be the most powerful when the ideas have to be generalized to other
and more complicated problems.

5. Green's Third Identity for a Circle
The investigation of the question whether (4.1) gives a connection between the

boundary values u and du/dv, cf. the three cases in Section 4, is here carried out in an
elementary manner. To this end the arbitrary boundary curve T may be chosen as the
particular boundary curve: a circle C with radius c:

C: x = c cos 6, y = c sin 0; 0 ^ 0 «S In.
Using polar coordinates the integration point F is characterized by (c, 0), while the
parameter point r' is characterized by (R, </>), where 0 < $ ^ 2TT, 0 ^ R < CO. The
definite integral in (4.1) becomes then a function / = f(R, <j>), which by simple
geometrical considerations can be written (d/dv = d/dr):

c f2" f du 1
f(R, 4>) = ^ <(.c-R cos(0-<£))p-2 u(c, 0)-ln p - ( c , 6) j- d6 (5.1a)

where, cf. (4.2b),
p2 = c2+R2-2cR cos (0 - <j>). (5.1b)
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INTEGRAL EQUATIONS 149

The boundary values for u and du/dr are expressed as Fourier-series
CO

u(c, 6) = ao+ £ (an cos nO+bn sin nO), (5.2a)
n = l

^(c , 0) = c~»! i40 + E "(4. cos n0+Bn sin n0)l. (5.2b)

The series (5.2) are inserted into the integral (5.1) and after elementary calculations,
and application of the integrals (Al), (A2), (A3), and (A4), one obtains that/(.K, #),
(5.1) is

( O-AolnR \
iao-Aolnci +
ao-Aolnc)

[(An-an) cos n(j) + (Bn-bn)smn<t>]\ (R> c, (5.3a)
E [AHGa&n4+Bnimn$\ \, \R = c, (5.3b)

n=1 {(R/c)" [(An+an) cos n<t> + (Bn+bn) sin n<l>]) [R < c. (5.3c)

In (5.2) it would be possible to impose the further condition that u is a solution of
Laplace's equation within a circle with radius c and, if so, then separation of variables
would give the following relations among the coefficients:

A'o-= 0 (5.4a)
An = cB, n = 1, 2 , . . . (5.4b)
Bn = bn, « = 1 , 2 , . . . . • (5.4c)

However, greater insight will be obtained if we go further before using the facts which
are expressed in (5.4).

From (5.3c) we observe that when the boundary values u and du/dr are given (that
is when the coefficients an, bn, An, and Bn are given) then the value of the function u is
determined uniquely within the circle. Now the question becomes: is it possible from
(5.3) to determine a unique relation between the boundary values u and du/dr 1—and
corresponding between the coefficients ?

Case (0): r' outside C, i.e. (5.3a)
We obtain a relation among the coefficients when we require that/(i?, 4>) = 0 for

all R > c, and for 0 < (j> < 2n, corresponding to (4.1(0)). This gives
0= -AolnR (5.5a)

an), n = l , 2 , . . . (5.5b)
bn), « = 1,2 (5.5c)

from which the known relations (5.4) can be derived without difficulties.

Case (i)+(l): ?' on C+f inside C, i.e. (5.3b) + (5.3c)
These two cases, corresponding to (4.1Q)) and (4.1(1)), can be considered simul-

taneously. First the limiting process R -> c is carried out in the result (5.3c), cf.
Section 4, Case (1), obtaining

00

lim/CR, tf>) = ao-Ao In c+ £ {\{An+a^ cos ncj)+^Bn+bn) sin n<f>}. (5.6)
R->c n = l

11

 at N
ational T

aiw
an O

cean U
niversity on July 10, 2011

im
am

at.oxfordjournals.org
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


150 S. CHRISTIANSEN

The boundary value for u which was inserted in the integral in (5.1) is
00

u(c, <f>) = a0 + £ {an cos n<$>+bn sin n<j>}. (5.7)
n = l

Now we require, that the result (5.3b) is equal to |M(C, <j>), cf. (5.7), and that the
boundary result (5.6) is equal to 1 u(c, <f>), cf. (5.7):

(i): Ac,<t>) = iu(c,ct>) (5.8a)
(1) : l im / ( t f , <f>) = 1 u(c, <t>). (5.8b)

R-+C

Comparison of coefficients gives:
( | ) : i.e. (5.8a):

iao-Ao\nc= K (5.9a)

\An = \aa, n = 1, 2 , . . . (5.9b)

i2?B = \bn, n=\,2 (5.9c)

(1): i.e. (5.8b):

ao-Ao\nc = a0 (5.10a)

i(An+an) = an, B = l , 2 , . . . (5.10b)

«£„+*„) = *„, n = l , 2 , . . . . (5.10c)

From (5.9b,c) and (5.10b,c) we obtain immediately the relations (5.4b,c) valid for
n= 1, 2, For n = 0 one obtains from both (5.9a) and (5.10a) that

Aolnc = 0 (5.11)
from which one concludes when c # 1 that Ao — 0 in accordance with (5.4a), while
in the exceptional case c = 1 it is impossible from (5.11) to conclude Ao = 0.

We see that in general it is possible by means of Green's third identity to create a
connection among (the Fourier coefficients of) the boundary values, but for a particular
critical magnitude of the boundary curve the connection breaks down for n = 0.

6. A Supplementary Condition
The lack of connection between the boundary values in Green's third identity,

which we observed in Section 5 for a particular exceptional geometry, can be elimi-
nated by adding a supplementary condition, which we are going to derive here.

The integral which appears in the fundamental formula (4.1) is identically equal to
zero when the point r' is placed outside the curve T, (4.1(0)). We consider the integral
when the point r' is far away from T. When the vector r' is expressed as R$L, where
& = cos <f> £+sin 4> y is a unit vector, we want to express the integral in terms of R
and 4> (see Fig. 2). In the integral in (4.1), which is considered as a function/ = f(R, <j>),
is introduced:

G(r ' , r )= - — lnp (6.1a)
In

dG dG dp
—(r',r) = — f , (6.1b)
dv dp dv
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INTEGRAL EQUATIONS 151

where
r ' = RR = R(cos <f> St + sin <f> y)
p = r'-r = Rk-f
p = |p| = (R2+r2-2fRk)* =
r= If I
£ = (r/R)2-2rfl/R

(6.2a)
(6.2b)
(6.2c)
(6.2d)
(6.2e)

(6.2f)

From (6.3) one can derive t

FIG. 2. A plane, closed, smooth, and simple curve T with origin placed inside I \ The point of
integration is r. The parameter point r ' = KR is expressed by means of the unit vector R, where
R = cos <f>i.+ sin 4>f- The distance between r and r' is denoted by p.

This gives that the integral in (4.1) is

s. (6.3)

(6.4)

(6.5)

/(*,<*>)= -

where

f 8U
= \ 5~

Jrdv

The integral in (6.3) should be zero identically, because it is derived from the
integral in (4.1), which is zero identically in the case (4.1(0)). But (6.3) or (6.4) are
derived as an expansion in R valid for R -> oo, from which we can only infer that
lim f(R, <f>) = 0. This means that we can conclude that the factor integral 7, (6.5)

necessarily must be equal to zero. Using Gauss' integral theorem the curve-integral
(6.5) can be transformed into a plane-integral

- J J . A« dx dy, (6.6)

where D denotes the domain within T. From (6.4) we have just derived that 7 = 0 ,
cf. (6.5), but this requirement is obviously always satisfied, as is seen from (6.6),
because the function u is assumed to be harmonic in D.

•f Professor, Dr techn. Erik Hansen has (in 1968) proposed such an expansion in R in connection with
a different investigation.
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152 S. CHRISTIANSEN

If in the integral in (6.5) we choose as the integration curve F a circle with radius c,
where ds = cdd, we get:

/ = j j C d0; (6.7)

here we insert the Fourier series (5.2) and obtain
/ = 2nA0. (6.8)

As expected, using the known connections (5.4) among the coefficients yields that /
in (6.8) is zero. When we investigated the identity (4.1) in connection with a circle
with radius c, we found that the known connections (5.4) could be derived, provided
that c # 1. This means that from the identity (4.1) we can conclude that / = 0 when
c # 1. But when c had the exceptional value 1, it was impossible to conclude that
Ao = 0. We see that this difficulty has influence on the computation of/, (6.8).

In the expansion (6.4) of the integral with r' placed outside the curve the integral
/, (6.5) was the factor which multiplied In R. From this fact we now conclude that in
the exceptional case, which appears when the curve has the critical magnitude (which
in the chosen example of a circle corresponds to the value c = 1), then there will
appear terms containing the factor In R. But the presence of such terms can be
excluded if it is explicitly required that / must be zero. This requirement we formulate
both in the special case where / is given in (6.7), but also in the general form where /
is given by (6.5), i.e. we require

r a,.
(6.9)

As we have seen it is necessary only to add the requirement (6.9) in the exceptional
case, and, because the requirement (6.9) always has to be satisfied—cf. (6.6), it is
possible in all cases to add the requirement (6.9). The requirement (6.9) must not be
confused with the condition which one always has to impose on the known function
in the case of a Neumann boundary value problem. Here in the case of a Dirichlet
boundary value problem we arrive at a condition which the unknown function must satisfy.

Consequently in connection with integral equations derived from Green's third
identity (4.1) it is advantageous always to add the requirement (6.9).

7. Numerical Solution of an Integral Equation together with the
Supplementary Condition
Here we show how it can be arranged to combine the solution of the integral

equation (2.4) with the requirement (6.9). The practical-numerical procedure can thus
be displayed.

When the integral equation (2.4) is considered, where the unknown is ^(r), then the
supplementary condition (6.9) becomes the following t+

\ ^(r) ds = 0 (7.1)

t In the derivation of (6.9) a simply-connected region was used, while the region in Fig. 1 is doubly-
connected. But by means of two closely spaced parallel curves connecting F o and r \ this domain
can be made simply-connected, and (6.9) can be applied. But the sum of the contributions from the
parallel curves is zero, and (7.1) is obtained.

t Jaswon (1963, p. 28, footnote) has in passing touched upon a similar condition for a more general
boundary value problem. A physical interpretation of Jaswon's condition in connection with a
practical application of the present investigations (Rasmussen & Christiansen, 1973) was performed
at an early stage by Professor, Dr techn. Erik Hansen.
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INTEGRAL EQUATIONS 153

because \]/(j) is equal to (du/dv)(f), cf. (2.5). Even though both curves appear in the
condition (7.1) it is solely the external curve Fo which determines whether the geometry
is critical. See Section 3, (d).

The integral equation (2.4) is replaced by a system of linear algebraic equations by
means of a method (Rasmussen & Christiansen, 1973), which is developed from the
method of Symm (1963): on each curve, Fo and F l 5 is picked out an even number of
points, namely 2«0 and In^ respectively. These are numbered: \, 1, l+i, 2,...,
"/—i» ni where / = 0 or 1. The curves are approximated by straight lines between the
points introduced. On each curve F,, where / = 0 or 1, the function is assumed to be
constant between the pointy—\ and the point y-f ,̂ at the value ipij. Now the integrals
in (2.4) can be written as a sum, where each term is the product of IJJ,J and the
integral of In p taken over the two straight lines meeting in the point j on curve /.
This integral can in all cases be evaluated in closed form (Rasmussen & Christiansen,
1973, Appendix A.3); this result was not given by Symm (1963). Denoting this
integral by Mkti-Aj we have indicated that it also depends upon the point r0, which is
placed on curve Tk, in point i, where i = 1,2,..., nk, and k = 0 or 1. Thus the
integral equation (2.4) is replaced by MO+«I linear algebraic equations with no+«i
unknowns:

> K — \},i — L , z , . . .,n0,

Wr«o); * = 1,1 - 1, 2,..., „, (?-2)

The condition (7.1) is similarly transformed into the equation

'l £ frj + zMj = 0, (7.3)
1 = 0 j=l

where zFj, ztj indicate the length from pointy to pointy—\ (reversed) or to point
j+\ respectively; the lengths are measured between the points mentioned—which all
are lying on curve F,—along the approximating straight lines. Thus the sum zTj+ztj
is an approximation of the arc-length where ipij is assumed to be constant.

The system, (7.2) and (7.3) taken together, with «0+»i + l equations and no+wi
unknowns, is presumably in general incompatible, because it is derived by neglecting
some terms which correspond to the quadrature errors. Therefore we solve the
combined system using a least square error method (IBM-LLSQ, 1970). This method
can also be used if the condition (7.3) is neglected,! and we can then easily carry out
the computation both without and with the condition (7.3), and thus observe the
effect of this condition.

8. Numerical Examples

By applying the methods shown in Section 7 to three specific problems we demon-
strate by means of the three corresponding numerical examples that the exceptional
case is completely eliminated by application of the supplementary condition.

t If the condition (7.3) is left out the system (7.2) can be solved using an ordinary Gaussian
elimination (IBM-SIMQ, 1970).
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Example 1

The curves F o and I \ are two concentric circles Co and C l f with radii c0 and cu

respectively (c0 > c,). This problem is considered in Section 3. The unique (two
dimensional) rotationally symmetric potential is

lnO/co)
" = Mo+, / , > i - » o ) ; Ci < r «S c0,

(8.1a)

from which we derive the exact constant solutions

du u,—i

du
Co

- +
zx ln(c,/c0)

Notice that the solutions (8.1) satisfy the two linear algebraic equations (3.1). The
exceptional case in the sense of Section 3 occurs when the exterior radius c0 is equal
to one; cf. (3.2a). In the following we consider the case c0 = 2c t. The equations (7.2)
either without or with the condition (7.3) are solved, when c0 takes on the values 0 1 ,
1-0 and 100, for different values of N = no+nu when n0 = n t . The relative errors
are shown in Table 1.

TABLE 1

Geometry: two concentric circles with radii CQ and C\ (co = 2ct). The relative error = (approxi-
mation—true)jtrue, given in units of 10~3, for \j/0 and i/^ (8.1). N = «o+«i is the number of

unknown function values. —, + denotes without, with the supplementary condition (7.3)

N

12

24

48

+

_
+

+

+

d = 005

13-5
13-6

3 1
3 1

0-8
0-8

Co = 01

8-8
8-9

1-9
1-9

0-4
0-4

d = 0-5

- 4 0
29-2

-1-1
7 1

-0-3
1-8

c0 = 10
(exceptional)

-999-8
26-3

-999-6
6-7

-998-7
1-7

C l = 50 c0

13-6
13-7

3-1
3 1

1 0
11

= 100

18-4
18-5

4-4
4-4

11
10

From Table 1 we derive the following findings:
(a) at the exceptional case the results obtained without the supplementary condition

are grossly wrong, while with the condition the results are accurate;
(b) away from the exceptional case there is not much difference between the results

obtained without or with the supplementary condition;
(c) the error of the results obtained with the supplementary condition decreases

approximately as h2 when N ~ h~l increases;
(d) the grossly wrong results in the exceptional case appear on the exterior curve

corresponding with the fact that \]/0 cannot be determined uniquely from (3.1)
when c0 — 1.
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Example 2
Analogous with Example 1; i.e. with c0 = 2cj. Here is considered the case shown

at the bottom of Table 1, i.e. the value N — no+nt is kept fixed equal to 48. The rela-
tive error for the solution ^0 on the exterior circle, cf. (d) above, is found both
without^ and with the condition (7.3). In Fig. 3 the results are displayed as two functions
of c0, where 0-5 < c0 < 1-0.

0-5 0 6 0 90-7 0-8
Exterior radius, Co

FIG. 3. Geometry: two concentric circles with radii c0 and clt where c0 = 2ct. The exceptional
geometry occurs when c0 = 1. The relative error = (approximation-true)/true, for the solution 0O>
cf. (8.1a), of the exterior circle, determined both without and with the supplementary condition (7.3).
The errors are here presented^as functions of c0, where 0-5 < c0 < 1-0. The signs + , -r- denote that
the relative error is positive, negative.

From Fig. 3 we derive the following findings: (i) and (ii) see the findings (a) and (b)
at Table 1; (iii) also when the geometry is different from, but somewhat close to, the
critical the results obtained without the supplementary condition are inaccurate.
Example 3

The curves To and r \ are two confocal ellipses:
To: x = a0 cos 9, y — b0 sin 6; 0 ^ 0

x = at cos 9, y = bx sin 6; 0 ^ 0
with

2n
In

(8.2a)
(8.2b)

a0 = c cosh fi0,
ai = c cosh pu

b0 = c sinh fi0

Z>! = c sinh nu

(8.2c)
(8.2d)

where 0 < Hi < /*o> while c is a constant. Using Moon & Spencer (1961, pp. 17-19)
one can find as the unique (two dimensional) solution of the potential problem:

u = Hi Ho,

t The case without condition has been completed using (IBM-SIMQ, 1970) and not (IBM-LLSQ,
1970), cf. Section 7, footnote t- This does not change the results essentially.
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from which one derives the exact solutions:
du

v \ , - « " " /~g www «• j , ^O. J«^

In the following we consider only the case:/ix = l,fi0 = 2. When the exterior curve is
an ellipse with semiaxes a0 and b0 the exceptional case in the sense of Section 3 occurs
when ao+bo = 2; cf. (3.2b). When n0 = 2 this corresponds with c = 0-2707 .. .;
cf. (8.2c). The equations (7.2) either without or with the condition (7.3) are
solved, when n0 = nx. The relative error on ^/0 (the solution on the exterior curve Fo)
is nearly the same for all points on Fo, while the relative error on \J/1 (the solution on
the interior curve F J is not the same for different points on F t : the largest (and
absolutely largest) relative error occurs at the end-points of the large semiaxes. t
Thus the relative error at the end-points of the large semiaxes is considered to be
representative for the relative errors on the two curves. In Table 2 this error is shown
for c = 01, 0-2707. . . and 1-0 for different values of N = no+nu when n0 = nt.

TABLE 2

Geometry: two ellipses (8.2). The relative error — (approximation—true)/true at the end-points
of the large semiaxes given in units of 10~3, for i/zo and ij/i (8.3). N= «o+«i is the number of

unknown function values. —, + denote without, with the supplementary condition (7.3)

N -

+

12 -
-|-

24

48
+

c =

A*i = l

19-3
19-7
9-2
9-3
3 0
3 0

0-1

0-3
1-2
0-3
0-4
0 1
0 1

c -•

7-2
30-3
6-2

12-0
2-2
3-6

= 0-2707...
(critical)

= 1 * , = 2

-1000-3
19-2

- 1 0 0 0 0
5-5

-998-3
1-4

c =

* - l

19-5
19-7
9-2
9-2
2-9
2-9

1.0

^o ~ 2

19-8
19-9
5-2
5-2
1-4
1-4

From Table 2 we derive the following findings: (i) and (ii) see the findings (a) and
(b) at Table 1; (iii) the error of the results obtained with the supplementary condition
decreases faster than hl when N ~ h~l increases; (iv) the grossly wrong results in the
exceptional case appears on the exterior curve, cf. finding (d) at Table 1.

9. Discussion
By means of Green's third identity one can derive an integral equation for the first

boundary value problem in two space-dimensions for an harmonic function. Even

t The relative error of the solution at a point of a curve seems to be positively correlated with the
curvature (= radius"1) at this point: the exterior curve F o is more nearly circular giving nearly the
same error, while the interior curve Tt deviates somewhat more from a circle having the absolutely
largest relative error where the curvature is largest.
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though the problem has a unique solution it turns out that in a particular exceptional
case when the geometry has a particular critical magnitude the integral equation does
not have a unique solution. Therefore we have investigated Green's third identity in
order to find whether this identity always exhibits a close connection between the
boundary values w and du/dv of an harmonic function. This is normally the case, but
we can very simply display the exceptional case which occurs when the geometry of
the problem has a particular critical magnitude. We eliminate this exceptional case by
adding a supplementary integral-condition (6.9), which would be automatically
satisfied, the exception being only for a particular valued geometrical boundary,
where it may fail to be fulfilled.

The value of this condition is demonstrated by three examples: the linear algebraic
equations (7.2), which correspond with the integral equation (2.4), are solved both
without and with the supplementary condition (7.3), which corresponds with (6.9).
Tables 1 and 2 show that the application of the condition in the exceptional case is
quite decisive, while causing no harm nor difficulty in all other cases.

The analytical investigation shows that the exceptional case, where the integral
equations do not have a unique solution, does occur for a certain particular geometry.
But from a computational point of view it turns out also when the geometry is different
from but somewhat close to the critical, it is difficult to obtain an accurate solution.
This effect where the analytical difficulty is smeared out in the practical case is illus-
trated in Fig. 3, showing that the solutions are less accurate in a fairly large zone
around the theoretical critical geometry. This makes it even more essential to identify
and eliminate the exceptional case.

We conclude that adding the condition (6.9) is essential, thus, quite simply, eliminat-
ing the exceptional case which can occur in connection with integral equations for two
dimensional harmonic problems.
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Appendix

Some definite integrals

The following integrals can be derived from (Gradshteyn & Ryzhik, 1965). The
numbers of the formulas used are written in [ ].

0 < x < In, 0 < c, 0 ^ R; p2 = c2+R2-2cRcosx.
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271 11, R < cl
i, R = c ; [3.613-2] (Al)

0, R > c\

sj>"' cos x)p~2 cos «x dx = - •
+(i?/c)n, R < c

0, R = c
", R> c

n = l , 2 , . . . ; [3.613-2] f (A2)

t And application of cos x cos nx = i [cos(n+l)x+cos(n— l)x].
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