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Abstract In this paper, the degenerate scale for plate
problem is studied. For the continuous model, we use
the null-field integral equation, Fourier series and the
series expansion in terms of degenerate kernel for fun-
damental solutions to examine the solvability of BIEM
for circular thin plates. Any two of the four boundary
integral equations in the plate formulation may be
chosen. For the discrete model, the circulant is employed
to determine the rank deficiency of the influence matrix.
Both approaches, continuous and discrete models, lead
to the same result of degenerate scale. We study the
nonunique solution analytically for the circular plate
and find degenerate scales. The similar properties of
solvability condition between the membrane (Laplace)
and plate (biharmonic) problems are also examined. The
number of degenerate scales for the six boundary inte-
gral formulations is also determined.

Keywords Plate Æ Biharmonic problem Æ Degenerate
scale Æ Boundary integral equation method Æ
Boundary element method Æ Circulant

1 Introduction

During the recent decades, BEM has been recognized
as an effective approach in numerical analysis over
than the FDM and FEM for some specific problems.

But, there are some pitfalls imbedded in the BEM,
e.g., the degenerate scale [9, 12] and fictitious fre-
quency [14] regarding to the solvability of formula-
tions. Many treatments were employed to overcome
the rank-deficiency problem e.g., rigid body motion
method [13], SVD updating technique [13], Burton and
Miller concept [10]. It is well known that the special
geometry size may result in a nonunique solution for
potential problems, and the size is coined degenerate
scale. It means that the term ‘‘scale’’ stems from the
fact that degenerate mechanism depends on the
geometry size used when the BEM is implemented.

The degenerate scale problems (nonuniqueness) in
BEM for potential problem [23] and plane elasticity [2,
17, 21, 22] have been done even for the plate problem
(biharmonic equation) [18, 24] and numerical experi-
ments have been performed [9]. Chen et al. [9, 12] have
determined the degenerate scale for Laplace and Navier
operators by using circulant and series expansion in
terms of degenerate kernel for fundamental solutions
[20]. For the degenerate scale of multiply-connected do-
main problems, Tomlinson et al. [30] and Mitra and Das
[26] have solved for Laplace and biharmonic equations
using BEM, respectively. In the recent work, Chen et al.
[9] studied the degenerate scale for simply-connected and
multiply-connected problems by using degenerate kernel
and circulant in a discrete model for circular and annular
cases. However, to the authors’ best knowledge, the skill
of degenerate kernel has not been employed to study the
degenerate scale problem of plate. This paper employs
the degenerate kernel as a mathematical tool to study the
degenerate scale problem of plate.

From the mathematical point of view, we solve har-
monic problems by means of Green’s identity which
leads to integral equations for the direct BEMs. This
equation does not have a unique solution for certain
boundary curves (C contour in [25]) and they are char-
acterized by means of the logarithmic capacity [3,19] (or
transfinite boundary, mapping radius, conformal
radius). For a circle, the logarithmic capacity is equal to
the radius. A rigorous study was proposed mathemati-
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cally by Chudinovich and Costanda [4–8, 17] and
Christiansen [3] for the plate problem (biharmonic
equation) on the occuring mechanism of the degenerate
scale. Although mathematicians [3] also encountered the
nonunique problem in BIEM, the addressed BIEs are
not the same as those used by the BEM researchers.
Numerical difficulties due to nonuniqueness of solutions
have been overcome by employing the necessary and
sufficient boundary integral equation (NSBIE) and
boundary contour method [27, 29]. On the other hand,
engineers always used the BEM program as a black box.
Therefore, they may not understand the possible failure
of the method and may take risk when a degenerate scale
occurs. We will fill the gap between the mathematicians
and engineers and demonstrate how the degenerate scale
problem occurs.

In this paper, the biharmonic operator instead of the
Laplacian or Navier operator is considered. The static
plate problem is solved by using the BIEM and BEM in
the continuous and discrete models, respectively. In the
conventional BEM for the Laplace and the Navier prob-
lems, we have proved the existence of one (Laplace) and
two (Navier) degenerate scales when the geometry is
special. Theoretical results for the degenerate scale of bi-
harmonic operator for rectangles and triangles have been
done byCostabel andDauge [19]. Numerical results using
the symmetric Galerkin BEM for ellipse and multiply
connected problems were also given by Vodička and
Mantič [31]. The fact that the number of degenerate scales
for the Navier equation can be one or two was also found
[19]. Engineers always do not take notice of the number of
degenerate scales for the biharmonic problem. Since any
two boundary integral equations in the plate formulation
(essential and natural sets) can be chosen, six ðC4

2Þ ap-
proaches can be considered. We may wonder how many
degenerate scales may appear in the BIEM and BEM for
plate problems. By using the six options, we have different
degenerate scales for each choice. In the discrete model,
the series expansion in terms of degenerate kernel for the
fundamental solution and circulant are employed to study
the rank-deficiency problem in the influence matrix. The
occurring mechanism of degenerate scale for simply-
connected plate problems in each formulation is studied
analytically by using the continuous and discrete models.
Besides, the similar properties of degenerate scale between
themembrane (Laplace) andplate (biharmonic) problems
are examined. The nontrivial modes, rigid bodymode and
spurious mode, for the Laplace and biharmonic problems
are studied. Finally, the number of degenerate scales for
each boundary integral formulation is determined.

2 Dual boundary integral equations for simply-connected
biharmonic problems

Consider the Kirchhoff plate [1] under distributed load
wðxÞ as shown in Fig. 1, the governing equation is
written as follows:

r4u�ðxÞ ¼ wðxÞ
D

; x 2 X; ð1Þ

where u�ðxÞ is the lateral displacement, D is the flexural
rigidity of the plate expressed as D ¼ Eh3

12ð1�m2Þ in terms of
Young’s modulus E, the Poisson ratio m and the plate
thickness h, and X is the domain of the thin plate. For
the boundary conditions of the clamped case, simply-
supported case and free case, we have

u�ðxÞ ¼ 0; h�ðxÞ ¼ 0; x 2 B; ð2Þ
u�ðxÞ ¼ 0;m�ðxÞ ¼ 0; x 2 B; ð3Þ
m�ðxÞ ¼ 0; v�ðxÞ ¼ 0; x 2 B ð4Þ
respectively, where B is the boundary, h�ðxÞ, m�ðxÞ and
v�ðxÞ are the slope, normal moment and effective shear
force, respectively. Since the governing equation con-
tains the body force, the problem is reformulated to
homogeneous PDE by using the splitting method as
follows:

r4uðxÞ ¼ 0; x 2 X; ð5Þ
and the essential boundary conditions are changed to

uðxÞ ¼ �uðxÞ; ouðxÞ
on
¼ �hðxÞ; x 2 B: ð6Þ

The mixed-type boundary conditions are

uðxÞ ¼ �uðxÞ;mðxÞ ¼ �mðxÞ; x 2 B: ð7Þ
The natural boundary conditions are

mðxÞ ¼ �mðxÞ; vðxÞ ¼ �vðxÞ; x 2 B: ð8Þ
The operators of slope, normal moment and effective
shear force are derived by

hðxÞ ¼Kh;xðuðxÞÞ ¼
ouðxÞ
onx

; ð9Þ

mðxÞ ¼Km;xðuðxÞÞ ¼ mr2
xuðxÞ þ ð1� mÞ o

2uðxÞ
on2

x
; ð10Þ

vðxÞ ¼Kv; xðuðxÞÞ ¼
or2

xuðxÞ
onx

þ ð1� mÞ o

otx
ðo

2uðxÞ
onxotx

Þ; ð11Þ

Fig. 1 The Kirchoff clamped plate under distributed load



where Kh; xð�Þ, Km; xð�Þ and Kv; xð�Þ mean the operators
with respect to x; n and t are the normal vector and
tangential vector, respectively.

2.1 Mathematical formulation for biharmonic problems
using the dual boundary integral equations

The integral equations for the domain point of bihar-
monic problems can be derived from the Rayleigh-
Green identity as follows [16]:

8puðxÞ ¼
Z

B

f�Uðs; xÞvðsÞ þHðs; xÞmðsÞ

�Mðs; xÞhðsÞ þ V ðs; xÞuðsÞgdBðsÞ; x 2 X; ð12Þ

8phðxÞ ¼
Z

B

f�Uhðs;xÞvðsÞ þHhðs;xÞmðsÞ

�Mhðs;xÞhðsÞ þ Vhðs;xÞuðsÞgdBðsÞ; x 2 X; ð13Þ

8pmðxÞ ¼
Z

B

f�Umðs; xÞvðsÞ þHmðs;xÞmðsÞ

�Mmðs; xÞhðsÞþVmðs; xÞuðsÞgdBðsÞ; x 2 X; ð14Þ

8pvðxÞ ¼
Z

B

f�Uvðs; xÞvðsÞ þHvðs; xÞmðsÞ

�Mvðs; xÞhðsÞ þ Vvðs; xÞuðsÞgdBðsÞ; x 2 X; ð15Þ
where s and x are the source and field points,
respectively, U , H, M , V , Uh, Hh, Mh, Vh, Um, Hm,
Mm, Vm, Uv, Hv, Mv and Vv are the kernel functions
which are listed in Appendix A by using the series
expansion in terms of degenerate kernel. The kernel
function Uðs; xÞ is the fundamental solution which
satisfies

r4
xUðx; sÞ ¼ 8pdðx� sÞ; ð16Þ

where dðx� sÞ is the Dirac-delta function. Then, we can
obtain the fundamental solution as follows:

Uðx; sÞ ¼ r2lnr; ð17Þ
where r is the distance between x and s (r ¼ jx� sj). We
choose the null-field integral equations to study the
degenerate scale problem analytically. Once the field
point x locates outside the domain, the null-field BIEs in
Eqs. (12)–(15) yield

0 ¼
Z

B

f�Uðs; xÞvðsÞ þHðs; xÞmðsÞ

�Mðs; xÞhðsÞ þ V ðs; xÞuðsÞg dBðsÞ; x 2 Xe; ð18Þ

0 ¼
Z

B

f�Uhðs; xÞvðsÞ þHhðs; xÞmðsÞ

�Mhðs; xÞhðsÞ þ Vhðs; xÞuðsÞg dBðsÞ; x 2 Xe; ð19Þ

0 ¼
Z

B

f�Umðs; xÞvðsÞ þHmðs; xÞmðsÞ

�Mmðs; xÞhðsÞ þ Vmðs; xÞuðsÞg dBðsÞ; x 2 Xe; ð20Þ

0 ¼
Z

B

f�Uvðs; xÞvðsÞ þHvðs; xÞmðsÞ

�Mvðs; xÞhðsÞ þ Vvðs; xÞuðsÞgdBðsÞ; x 2 Xe; ð21Þ
where Xe is the complementary domain. By using the
series expansion in terms of degenerate kernel, the BIE
for the ‘‘boundary point’’ is derived easily through the
null-field integral equation without the jump and free
terms. When the boundary is uniformly discretized into
2N constant elements, the linear algebraic equations of
Eqs. (18)–(21) by moving the field point x close to the
boundary Bþ are obtained as follows:

½Uij�fvjg þ ½Mij�fhjg ¼ ½Hij�fmjg þ ½Vij�fujg; ð22Þ

½Uh
ij�fvjg þ ½Mh

ij�fhjg ¼ ½Hh
ij�fmjg þ ½V h

ij �fujg; ð23Þ

½Um
ij �fvjg þ ½Mm

ij �fhjg ¼ ½Hm
ij �fmjg þ ½V m

ij �fujg; ð24Þ

½Uv
ij�fvjg þ ½Mv

ij�fhjg ¼ ½Hv
ij�fmjg þ ½V v

ij �fujg; ð25Þ

where ½Uij�, ½Hij�, ½Mij�, ½Vij�, ½Uh
ij�, ½Hh

ij�, ½Mh
ij�, ½V h

ij �, ½Um
ij �,

½Hm
ij �, ½Mm

ij �, ½V m
ij �, ½Uv

ij�, ½Hv
ij�, ½Mv

ij� and ½V v
ij � are the sixteen

influence matrices with a dimension 2N � 2N , fujg, fhjg,
fmjg and fvjg are the vectors of boundary data with a
dimension 2N � 1. After substituting the boundary
condition, we expand the sixteen kernel functions into
series form in terms of degenerate kernels as shown in
Appendix A and substitute them into boundary integral
formulation in the continuous and discrete models. To
derive the degenerate scale analytically, a circular plate
is demonstrated.

2.2 Existence of the degenerate scale for a circular
plate — continuous model (BIEM)

For the clamped, simply-supported and free circular
plates, we demonstrate the existence of degenerate scale
by employing the BIEs in the continuous model. Since
any two BIEs in the plate formulation (essential and
natural sets) are chosen, six ðC4

2Þ options are considered.
Although a circular case lacks generality, it leads sig-
nificant insight into the occurring mechanism of degen-
erate scale.

Case 1. Clamped plate

The moment and shear force, mðsÞ and vðsÞ, are ex-
panded into Fourier series as shown below:

mðsÞ ¼ pc
0 þ

X1
n¼1
ðpc

n cosðnhÞ þ qc
n sinðnhÞÞ; s 2 B; ð26Þ



vðsÞ ¼ ac
0 þ

X1
n¼1
ðac

n cosðnhÞ þ bc
n sinðnhÞÞ; s 2 B; ð27Þ

where pc
0, pc

n, qc
n, ac

0, ac
n and bc

n are the undetermined
Fourier coefficients for mðsÞ and vðsÞ, h is the angle on
the circular boundary and the superscript c denotes the
clamped case. By using the null-field integral equations
of Eqs. (18) and (19), the clamped boundary conditions,
uðsÞ and hðsÞ, are substituted. By using the series
expansion in terms of degenerate kernel and substituting
the boundary densities in Eqs. (26) and (27) into the
BIEs, we have

f c
1 ð/Þ ¼ �

Z2p

0

Uðs; xÞ½ac
0 þ

X1
n¼1
ðac

n cosðnhÞ

þ bc
n sinðnhÞÞ�adh

þ
Z2p

0

Hðs; xÞ½pc
0 þ

X1
n¼1
ðpc

n cosðnhÞ

þ qc
n sinðnhÞÞ�adh; x 2 B; ð28Þ

f c
2 ð/Þ ¼ �

Z2p

0

Uhðs; xÞ½ac
0 þ

X1
n¼1
ðac

n cosðnhÞ

þ bc
n sinðnhÞÞ�adh

þ
Z2p

0

Hhðs; xÞ½pc
0 þ

X1
n¼1
ðpc

n cosðnhÞ

þ qc
n sinðnhÞÞ�adh; x 2 B; ð29Þ

where f c
1 ð/Þ and f c

2 ð/Þ are the terms due to the specified
boundary conditions. Moreover, f c

1 and f c
2 can be

expressed in terms of Fourier series

f c
1 ð/Þ ¼ gc

0 þ
X1
n¼1
½gc

n cosðn/Þ þ hc
n sinðn/Þ� ð30Þ

f c
2 ð/Þ ¼ g�c0 þ

X1
n¼1
½g�cn cosðn/Þ þ h�cn sinðn/Þ� ð31Þ

where the coefficients gc
0, gc

n, hc
n, g�c0 , g�cn and h�cn are all

known. In this case, we have the R ¼ q ¼ a for the direct
BIEM and dBðsÞ ¼ a dh for the circular plate with
radius a. By employing the orthogonality condition of
the Fourier bases, we construct the relations of the
Fourier coefficients among ac

n, bc
n, pc

n and qc
n. Combining

the two integral equations in Eqs. (28) and (29) and
comparing with the coefficients, we assemble them into
the matrix forms as shown below:

½SMe
m�2�2

ac
m

pc
m

� �
¼ gc

m
g�cm

� �
;m ¼ 0; 1; 2; 3; . . . ð32Þ

½SMo
m�2�2

bc
m

qc
m

� �
¼ g�cm

h�cm

� �
;m ¼ 1; 2; 3; . . . ð33Þ

where the coefficients on the right-hand side of the equal
sign in Eqs. (32) and (33) are known and those of the
left-hand side are undetermined; the superscripts, e and
o, denote the even part for cosðm/Þ and odd part for
sinðm/Þ, respectively. The matrices, ½SMe

m� and ½SMo
m�,

are shown below

½SMe
0 � ¼

2R2ð1þ lnqÞ þ 2q2 ln q �4Rð1þ ln qÞ
2 R2

q þ 2qð1þ 2 ln qÞ �4R
q

" #
;

m ¼ 0

ð34Þ

½SMe
1 � ¼

qð1þ 2 ln qÞ þ 3R2

2q �Rqð1þ 2 ln qÞ � R3

2q

ð3þ 2 ln qÞ � 3R2

2q2 �Rð3þ 2lnqÞ þ R3

2q2

2
4

3
5;

m ¼ 1

ð35Þ

½SMo
1 � ¼

qð1þ 2 ln qÞ þ 3R2

2q �Rqð1þ 2 ln qÞ � R3

2q

ð3þ 2 ln qÞ � 3R2

2q2 �Rð3þ 2 ln qÞ þ R3

2q2

2
4

3
5;

m ¼ 1

ð37Þ

respectively. It is interesting to find that the coefficients
of Eqs. (35) and (36) are the same to Eqs. (37) and (38),
respectively. We determine the unknown coefficients by

½SMe
m� ¼

�ðm� 1ÞR3 þ ðmþ 1ÞRq2 ðmþ 2Þðm� 1ÞR2 � mðmþ 1Þq2

mðm� 1ÞR3 � ðm� 2Þðmþ 1ÞRq2 �mðmþ 2Þðm� 1ÞR2 þ mðmþ 1Þðm� 2Þq2

" #
;

m ¼ 2; 3; . . . ð36Þ

½SMo
m� ¼

�ðm� 1ÞR3 þ ðmþ 1ÞRq2 ðmþ 2Þðm� 1ÞR2 � mðmþ 1Þq2

mðm� 1ÞR3 � ðm� 2Þðmþ 1ÞRq2 �mðmþ 2Þðm� 1ÞR2 þ mðmþ 1Þðm� 2Þq2

" #
;

m ¼ 2; 3; :::: ð38Þ



using the Eqs. (32) and (33). For the occurring mecha-
nism of the degenerate scale, we examine the zero
determinants for ½SMe

m� and ½SMo
m�. In Eqs. (34), (36) and

(38), the determinants of the three matrices are not zero

for any value of a (Here, R ¼ q ¼ a). It is found that the
zero determinants of influence matrices in Eqs. (35) and
(37) occur in the direct BIEM (q ¼ R ¼ a) since

det½SMe
1 � ¼ det½SMo

1 �
¼ �16a2ð1þ ln ðaÞÞ ¼ 0; m ¼ 1: ð39Þ

As (1+ln a) becomes zero in Eq. (39), it indicates that
the radius of value e�1 is the degenerate scale. In other
words, we encounter the nonunique solution in mathe-
matics because the matrices of ½SMe

1 � and ½SMo
1 � are

singular.

Case 2. Simply-supported plate

For the simply-supported circular plate, the matrices
½SMe

m� and ½SMo
m� are obtained as

½SMe
0 � ¼

R2ð1þ ln qÞ þ q2 ln q 2ð1þ mÞð1þ ln qÞ
R2 þ q2ð1þ 2 ln qÞ 2ð1þ mÞ

" #
;

m ¼ 0

ð40Þ

½SMe
1 � ¼

2q2ð1þ 2 ln qÞ þ R2 2ð3þ mÞ
�2q2Rð3þ 2 ln qÞ þ R2 2ð3þ mÞ

" #
;

m ¼ 1

ð41Þ

½SMo
1 � ¼

2q2ð1þ 2 ln qÞ þ R2 2ð3þ mÞ
�2q2Rð3þ 2 ln qÞ þ R2 2ð3þ mÞ

" #
;

m ¼ 1 ð43Þ

respectively. The zero determinants of influence matrices
in Eqs. (41) and (43) occur in the direct BIEM
(q ¼ R ¼ a) since

16a2ðmþ 3Þð1þ lnðaÞÞ ¼ 0; m ¼ 1: ð45Þ
As ð1þ lnðaÞÞ becomes zero in Eq. (45), it means that
the radius approaches the degenerate scale of e�1.

Case 3. Free plate

Similarly, the matrices ½SMe
m� and ½SMo

m� are obtained as

½SMe
0 � ¼

4pð1þ mÞð1þ ln qÞ 0
4pð1þ mÞ 0

� �
; m ¼ 0 ð46Þ

½SMe
1 � ¼

R �1
R �1

� �
; m ¼ 1 ð47Þ

½SMo
1 � ¼

R �1
R �1

� �
; m ¼ 1 ð49Þ

respectively. By examining the zero determinants in Eqs.
(46)–(50) for the free case, we find that there are no
occurring mechanism of the degenerate scale but rigid
body solution. It is easy to check that the zero deter-

½SMe
m� ¼

�R2

mðmþ1Þ þ
q2

mðm�1Þ
2ðmþ1Þ�mðm�1Þ

m þ ð1� mÞ q2

R2

R2

ðmþ1Þq2 � mðmþ 2Þðm� 1ÞR2 þ mðmþ 1Þðm� 2Þq2 ðmðm�1Þ�2ðmþ1ÞÞ
q2 þ ð1�mÞð�mþ2Þ

R2

2
4

3
5;

m ¼ 2; 3; . . . ð42Þ

½SMo
m� ¼

�R2

mðmþ1Þ þ
q2

mðm�1Þ
2ðmþ1Þ�mðm�1Þ

m þ ð1� mÞ q2

R2

R2

ðmþ1Þq2 � mðmþ 2Þðm� 1ÞR2 þ mðmþ 1Þðm� 2Þq2 ðmðm�1Þ�2ðmþ1ÞÞ
q2 þ ð1�mÞð�mþ2Þ

R2

2
4

3
5;

m ¼ 2; 3; . . . ð44Þ

½SMe
m� ¼

� mðm�1Þ�2ðmþ1Þ
m þ ð1� mÞ q2

R2

ðmð1�mÞ�4Þ
R þ mð1� mÞ q2

R3

mðm�1Þ�2ðmþ1Þ
q þ ð1� mÞð�mþ 2Þ q

R2

mðmð1�mÞ�4Þ
Rq þ mð�mþ 2Þð1� mÞ q

R3

2
4

3
5;

m ¼ 2; 3; . . . ð48Þ

½SMo
m� ¼

� mðm�1Þ�2ðmþ1Þ
m þ ð1� mÞ q2

R2

ðmð1�mÞ�4Þ
R þ mð1� mÞ q2

R3

mðm�1Þ�2ðmþ1Þ
q þ ð1� mÞð�mþ 2Þ q

R2

mðmð1�mÞ�4Þ
Rq þ mð�mþ 2Þð1� mÞ q

R3

2
4

3
5;

m ¼ 2; 3; . . . ð50Þ



minant of matrices occur for any size of a since the row
vectors in Eqs. (46), (47) and (49) are linearly dependent.
The zero determinant results in rigid body modes instead
of degenerate scales. The boundary densities, mðsÞ and
vðsÞ, are zeros due to free boundary condition. From the
Eqs. (46), (47) and (49), we obtain the boundary eigen-
vector corresponding to the zero eigenvalue (multiplicity
= 3) as

a0
p0
a1
p1
..
.

am

pm

b1
q1
..
.

bm

qm

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

¼ k1

0
1
0
0
..
.

0
0
0
0
..
.

0
0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

þ k2

0
0
1
a
..
.

0
0
0
0
..
.

0
0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

þ k3

0
0
0
0
..
.

0
0
1
a
..
.

0
0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð51Þ

where k1, k2 and k3 are the arbitrary coefficients. By
substituting the series expansion in terms of degenerate
kernel and boundary densities of Eq. (51) into the
boundary integral equation of Eq. (12), we have the
nontrivial potential uðxÞ
uðxÞ ¼ uðq;/Þ ¼ constant; m ¼ 0 ð52Þ

uðxÞ ¼ uðq;/Þ ¼ ð1þ mÞ
4a

q cos/; m ¼ 1 ð53Þ

uðxÞ ¼ uðq;/Þ ¼ ð1þ mÞ
4a

q sin/; m ¼ 1: ð54Þ

The zero determinant for the free case results in the three
rigid body solutions of Eqs. (52), (53) and (54) for any
value of a. All the degenerate scales for the three
boundary conditions by using the six formulations are
summarized in Table 1.

According to the results of the degenerate scale
problem in the continuous model, we find that the same
degenerate scales occur for the problems subject to the
clamped and simply-supported boundary conditions and
are mathematically realizable which means that the
problem is uniquely solvable but the BIE has zero
eigenvalue. For the free case, zero determinant results
from zero eigenvalue due to the rigid body solution
which is physically realizable. Since any two equations in
the plate formulation (Eqs. (18)–(21)) can be chosen,
6ðC4

2Þ options of the formulation are considered. If we
choose different formulae for either one of the the
clamped, simply-supported or free circular cases, we find
that the occurrence of the degenerate scale only depends
on the formulation instead of the specified boundary
condition. In other words, the clamped, simply-sup-
ported and free circular plates results in the same
degenerate scale, once the same formulation is chosen.

2.3 Existence of the degenerate scale for a circular
plate — discrete model (BEM)

Case 1. Clamped case

For the clamped case, Eqs. (22) and (23) can be rewritten
as

ff c
1 g ¼ ½�U �fvg þ ½H�fmg; ð55Þ

ff c
2 g ¼ ½�Uh�fvg þ ½Hh�fmg: ð56Þ

By assembling Eqs. (55) and (56) together, we have

½SMc� v
m

� �
¼ f c

1

f c
2

� �
ð57Þ

where

½SMc� ¼ �U H
�Uh Hh

� �
4N�4N

: ð58Þ

Since the rotation symmetry is preserved for a circular
boundary with uniform nodes, the influence matrices for
the discrete model are found to be circulants. Therefore,
we have the eigenvalues of [SMc],

kc¼

8p2a4½1þlnðaÞþðlnðaÞÞ2�; l¼0;
4p2a4½1þlnðaÞ�; l¼�1;
�2p2a4½ 1

jljðjlj�1Þðjljþ1Þ2�; l¼�2;�3;...;
�ðN�1Þ;�N

8>>><
>>>:

ð59Þ

According to the zero determinant of the ½SMc� matrix,
we examine the existence of the degenerate scales. For the
case of l ¼ 0 in Eq. (59), the term of 1þ lnðaÞ þ ðlnðaÞÞ2
is positive for any value of a. We obtain the possible
degenerate scales and find the occurring mechanism of
the degenerate scales in the discrete model by using
the circulants for the circular plate. In the clamped
case, we have the degenerate scale e�1 when 1þ lnðaÞ
approaches zero. The result of the Eq. (59) in the
discrete model matches well with the Eq. (39) in the
continuous model.

Table 1 Degenerate scales for different boundary in the continuous
and discrete models using the boundary integral equation

Boundary condition Clamped and
Simply-supported

Free

Formulations
u, h formulation 1+ ln a =0 Never zero
u, m formulation º(� � 1)(1+2 ln a)

) 2(1 + �) (1 + ln a)2ß
[� þ � ln a ) ln a] = 0

Never zero

u, m formulation (1+ ln a) (� � 4� 2
ln a + 2� ln a) = 0

Never zero

h, m formulation (1 + ln a) [� (1 + ln a)
) ln a ) 2 ] = 0

Never zero

h, m formulation � (3 + 2 ln a)
) 2 ln a = 0

Never zero

m, m formulation Never zero Never zero



Case 2. Simply-supported case

For the simply-supported circular plate, we have the
eigenvalues of [SMs] [32]

ks ¼

�8p2a3ð1þ mÞ½1þ 2 lnðaÞ
þ2ð lnðaÞÞ2�; l ¼ 0;

4p2a3ð3þ mÞ½1þ lnðaÞ�; l ¼ �1;
4p2a3½ðjlj�2Þðmðjlj�1Þ�ðjljþ1ÞÞjlj2ðjlj�1Þðjljþ1Þ �;

l ¼ �2;�3; . . . ;�ðN � 1Þ;N

8>>>>>><
>>>>>>:

ð60Þ

where the superscript ‘‘s’’ denotes the simply-supported
case. By examining the zero determinant of the matrix
½SMs�, we obtain the possible degenerate scale of
1þ lnðaÞ in the discrete model when l ¼ �1. It is noted
that the case of l ¼ 0 in Eq. (60) are always positive for
any value of a due to the positive term of
1þ 2 lnðaÞ þ 2ðlnðaÞÞ2. We have the same degenerate
scale of the clamped case by using the circulants for the
circular plate. It indicates that the radius of e�1 is the
degenerate scale. The result of the Eq. (60) in the discrete
model matches well with the Eq. (45) in the continuous
model.

Case 3. Free case

For the free circular plate, we have the eigenvalues of
[SMf] [32]

kf ¼

0; l¼ 0;

0; l¼�1;
4p2jlj2ðm�1Þ2�4jljmðm�1Þþ4ðm2� m�3Þ;
l¼�2;�3; . . . ;�ðN �1Þ;�N

8>><
>>:

ð61Þ
By examining the determinant of matrix ½SMf �, we
find that no degenerate scale but rigid body motion
appears for the free case in the discrete model. It
implies that we can solve the rigid body solution in-
stead of worrying about the occurrence of the degen-
erate scale. For the cases of l ¼ 0 and l ¼ �1 in Eq.
(61), the determinants are zero. In the clamped and
simply-supported cases, there are no rigid body
modes. For the free case, we may wonder why the
three nontrivial modes exist in this case. The detailed
discussions are addressed in Sect. 3. The result of the
Eq. (61) in the discrete model matches well with the
result of Eq. (51) in the continuous model. After
comparing the results of continuous model with those
of discrete model for the degenerate scale, good
agreement is made. If we choose different formulae for
either one of the clamped, simply-supported and free
circular plate cases, we find that the occurrence of the
degenerate scale only depends on the formulation in-
stead of the boundary condition. It is interesting to
find that the degenerate scale problem does not occur
in the m� v formulation. All the results are summa-
rized in Table 1.

2.4 Discussion on nonuniqueness and relation
of degenerate scale between the Laplace
and biharmonic equations

The existence of nonuniqueness in the solution of
boundary value problems (BVPs) by means of various
integral representation can be categorized to three types.
One is that the rigid body solution is imbedded in
the boundary integral formulation for the Neumann or
traction problem. Another kind of nonuniqueness
appears in the plane BVP where a degenerate (critical)
scale results in the zero eigenvalue of the influence ma-
trix. The other kind of non-unique solutions occur when
the hypersinglar or traction BIE is applied especially for
multiply-connected problems.

Let us focus on the relation between the degenerate
scale problem in the Laplace and biharmonic problems
subject to different boundary conditions. For the La-
place problem, the phenomenon of degenerate scale,
lnðaÞ ¼ 0, occurs when using the singular (UT) formu-
lation to solve the Dirichlet problem as shown in Fig. 2.
The occurrence of the degenerate scale is mathematically
realizable. But there are no degenerate scale for the
Neumann problem when using the singular (UT) or
hypersingular (LM) formulations. However, zero
eigenvalue arises naturally due to the rigid body solution
in physics. The outcome is physically realizable.

For the biharmonic problem, we have the six
boundary integral equations for the plate subject to three
kinds of boundary conditions. We find that the mecha-
nism of degenerate scale of the clamped and simply-
supported cases of biharmonic problems are similar to
those of the Dirichlet problem of Laplace equation. By
employing the boundary integral equations for the two
boundary conditions, the former five approaches result
in degenerate scales and the last one (m� v formulation)
does not have any degenerate scales for constrained
problems. This fact agrees with the result that LM for-
mulation can solve the Dirichlet problem of Laplace
equation without any difficulty since the determinant of
the influence matrix is never zero [9, 11, 13]. For the free
case, the results are similar to the Neumann problem for
the Laplace equation. It is noted that there is a rigid body
solution for the Laplace problem subject to the Neumann
boundary condition. On the other hand, we have three
rigid body modes of the biharmonic problem for the free
case in both the continuous and discrete models.

3. Discussions for the number of degenerate scales

In Sect. 2, we have demonstrated the existence of the
degenerate scales which depends on the formulations
instead of the boundary conditions. Chen et al. [9] have
solved the degenerate scale problem for the Laplace
equation successfully as shown in Fig. 2. Here, we dis-
cuss the number of the degenerate scales in each for-
mulation for the clamped, simply-supported and free



problems as shown in Table 1. We consider the damped
and simply-supported problems together since no
degenerate scale occurs in the free case. For the u� h
formulation, we have only one degenerate scale with the
radius a which approaches e�1 (1þ lnðaÞ ¼ 0) for any
value of the Poisson ratio m. We plot the graphs of
contour form and 3-D view for m ð�1 < m � 0:5Þ and the
radius a ð0 < a < 1:2Þ as shown in Fig. 3(a). Let us
consider the contour plot of u� m formulation, we may
have two or three degenerate scales when m is fixed in
Fig. 3(b). For the u� v and h� m formulations, we have
one or two degenerate scales as shown in Figs. 3(c) and
(d), respectively. By using the h� v formulation, there is
only one degenerate scale occurs when m is fixed in Fig.
3(e). No degenerate scale occurs in the m� v formula-
tion as shown in Table 2 and Fig. 3(f). It is obvious to
find that we have at least one degenerate scale and have
three at most when using the boundary element method
except the m� v formulation. Furthermore, we find that
the occurring mechanism of degenerate scale depends on

the Poisson ratio for the five formulations except u� h
formulation. Briefly speaking, the m� v formulation is
free of degenerate scale in sacrifice of using more com-
plex kernels in a similar way of hypersingular formula-
tion (LM equation) for the Laplace problem. From this
study, we can predict the possible failure when using the
BIEM/BEM to solve plate problems in advance.

4. Illustrative examples

Case 1:

According to the dual formulation, we use the null-field
integral equations of Eqs. (18) and (21) to derive the
analytical solution for the biharmonic problem in Fig. 4
[28] as follows:

r4uðxÞ ¼ 0; x 2 X ð62Þ
subject to the essential boundary conditions

uðxÞ ¼ 0; x 2 B ð63Þ

ouðxÞ
on
¼ �1; h0 < h < h1

0; h1 < h < 2pþ h0
x 2 B

�
ð64Þ

Fig. 2 3D and contour plots for the degenerate scale in the continuous
and discrete models for the Laplace equation (The dotted line is the
position that degenerate scales occur)



where X is a circular domain with radius a. The
boundary densities of uðxÞ and ouðxÞ

on are expanded in
terms of Fourier series

uðxÞ ¼ g0 þ
X1
m¼1
ðgm cosðm/Þ þ hm sinðm/ÞÞ; ð65Þ

ouðxÞ
on
¼ g�0 þ

X1
m¼1
ðg�m cosðm/Þ þ h�m sinðm/ÞÞ; ð66Þ

where the specified Fourier coefficients are

Fig. 3 3D-plot and contour for the degenerate scale in the continuous
and discrete models of biharmonic equation using the boundary
integral equations



g0 ¼ gm ¼ hm ¼ 0; g�0 ¼
1

2p
ðh1 � h0Þ;

g�m ¼
1

mp
ðsinmh1 � sinmh0Þ; h�m ¼

1

mp
ðcosmh1 � cosmh0Þ:

ð67Þ

By utilizing the null-field integral equation in conjunc-
tion with Fourier series and the series expansion in terms
of degenerate kernels for fundamental solutions, we can
derive the series solution. For simplicity, we choose
h0 ¼ p

2 and h1 ¼ �p
2 . By substituting the density functions

of Eqs. (26) and (27) and expanding the fundamental
solution in terms of degenerate kernel into the null-field
integral equations, u� h formulation, the Fourier

Fig. 3 (Contd.)



coefficients for mðsÞ and vðsÞ in Eqs. (18) and (19) are
obtained as shown below:

p0 ¼
�ð1þ mÞ

2a
; ð68Þ

p1 ¼
�2ðmþ 3Þ

pa
; ð69Þ

pm ¼
�2ð1þ 2mþ mÞ

mpa
sin

mp
2
;m ¼ 2; 3; . . . ð70Þ

a0 ¼ 0; ð71Þ

a1 ¼
�2ðmþ 3Þ

pa2
; ð72Þ

am ¼
�2ð2þ 2mþ mmÞ

pa2
sin

mp
2
; m ¼ 2; 3; . . . : ð73Þ

After obtaining the boundary densities, we substitute
them into the boundary integral equations to yield the
series solution

uðq;/Þ ¼ 1

8p
f2pða� q2

a
Þ

þ
X1
m¼1

8qmða2 � q2Þ
mamþ1 sin

mp
2

cosðm/Þg: ð74Þ

For purpose of comparison, the series solution can
also be derived by using the Trefftz method as follows
[15]:

uðxÞ ¼ a0 þ b0q
2 þ

X1
m¼1
ðcmqm cosðm/Þ þ dmqm sinðm/ÞÞ

þ
X1
m¼1
ðgmqmþ2 cosðm/Þ þ hmqmþ2 sinðm/ÞÞ; ð75Þ

ouðxÞ
onx

¼ 2bqþ
X1
m¼1

mðcmqm�1 cosðm/Þ þ dmqm�1 sinðm/ÞÞ

þ
X1
m¼1
ðmþ 2Þðgmqmþ1 cosðm/Þ

þ hmqmþ1 sinðm/ÞÞ; ð76Þ
where the a, b, cm, dm, gm and hm are the unknown
coefficients. By substituting Eqs. (75) and (76) into the
boundary condition of Eq. (63), the unknown coeffi-
cients are obtained as

a0 ¼
1

4
; ð77Þ

b0 ¼
�1
4
; ð78Þ

cm ¼
1

mp
cosðmpÞ sinðmp

2
Þ; ð79Þ

gm ¼
�1
mp

cosðmpÞ sinðmp
2
Þ; ð80Þ

dm ¼ hm ¼ 0: ð81Þ
We have the field solution as follows:

uðxÞ ¼ uðq;/Þ ¼ 1

4
ð1� q2Þ

�
X1
m¼1

1

mp
cosðmpÞ sin mp

2

� �
ðqmþ2 cosðm/Þ

� qm cosðm/ÞÞ: ð82Þ
Eq. (82) are found to be the same to Eq. (74). It is
interesting to find that the six Trefftz bases are all
imbedded in the series expansion in terms of degenerate
kernel for fundamental soluitons [15]. The exact solu-
tion was obtained in a different way by Mills [28] as
follows:

Table 2 Relationship between the Laplace problem and biharmonic problem



uðr; hÞ ¼ 1

2p
ð1� r2Þ

�
cþ arctan

1þ r
1� r

tan
h1 � h

2

� �� �

� arctan
1þ r
1� r

tan
h0 � h

2

� �� ��

ð83Þ

where

c ¼ 0; h1 � p < h < h0 þ p
p; h0 þ p < h < h1 þ p:

�
ð84Þ

We plot the results by using 20, 50 and 100 terms of the
series-form solution of Eq. (74) and find that the series
solution coverges well to the exact solution of Eq. (83) as
shown in Figs. 5(a), (b), (c) and (d). It deserves to be
mentioned that the degenerate scale occurs when
1þ lnðaÞ ¼ 0 in the continuous and discrete models
using the u� h formulation. In this case, we do not
observe the occurrence of the degenerate scale due to the
zero coefficient of a0 ¼ g0

1þlnðaÞ in Eq. (71) when m ¼ 0
even though a ¼ e�1. That is to say, we are fortunate to
solve the problem free of encountering the degenerate
scale problem due to the zero participation factor for the
spurious mode [14].

Case 2:

Let us consider the biharmonic problem subject to the
essential boundary condition as shown in Fig. 6

Fig. 4 The chart of the biharmonic equation with the essential
boundary condition (Case 1)

Fig. 5 Contour plots of biharmonic fields using degenerate kernels
and null-field integral equation



uðxÞ ¼

h�a
�1
þ 1; a� �1 < h < aþ �1
2; aþ �1 < h < b� �

b�h
� þ 1; b� � < h < bþ �
0; bþ � < h < a� �1

8>><
>>:

ð85Þ

ouðxÞ
on
¼ 0; ð86Þ

We choose a ¼ p
8, b ¼ p, � ¼ �1 ¼ p

32. By using the null-
field integral equation (u� h formulation) in conjunc-
tion with the series expansion in terms of degenerate
kernel, we have

2R2ð1þ ln qÞþ2q2ln q �4Rð1þ ln qÞ
2R2

q þ2qð1þ2 ln qÞ �4R
q

" #

a0
p0

� �
¼

0

0

� �
;

ð87Þ

qð1þ 2 ln qÞ þ 3R2

2q �Rqð1þ 2 ln qÞ � R3

2q

ð3þ 2 ln qÞ � 3R2

2q2 �Rð3þ 2 ln qÞ þ R3

2q2

2
4

3
5

a1

p1

( )
¼

0

0

( )
; ð88Þ

For simplicity, the Poisson ratio is assumed to be
m ¼ 0:3. In Eq. (88), we find the occurrence of the
degenerate scale when the radius a approaches e�1

(1þ lnðaÞ ¼ 0) using the u� h formulation. Similarly,
the occurrence of degenerate scale when using the other
five formulations is shown in Fig. 7. Good agreement is
made.

5. Conclusions

In this paper, we employed the null-field integral equa-
tion in conjunction with Fourier series and the series
expansion in terms of degenerate kernel for fundamental

Fig. 6 Biharmpnic problem (Case 2)

�ðm� 1ÞR3 þ ðmþ 1ÞRq2 ðmþ 2Þðm� 1ÞR2 � mðmþ 1Þq2

mðm� 1ÞR3 � ðm� 2Þðmþ 1ÞRq2 �mðmþ 2Þðm� 1ÞR2 þ mðmþ 1Þðm� 2Þq2

" #

am

pm

� �
¼

0

0

� �
;m ¼ 2; 3; . . . : ð89Þ



solutions to derive the degenerate scales of plate prob-
lem for the circular plate. The continuous and discrete
models were both considered by using the direct BIEM

Fig. 7 Determinant versus the radius a using the BIEM/BEM for a
circular plate problem (m = 0.3)



(continuous model) and direct BEM (discrete model),
respectively.

The occurrence of degenerate scales not only depends
on the formulation that we choose but also on the
Poisson’s ratio. The degenerate scales of the Laplace and
biharmonic problems are also compared with. We have
only one rigid body mode of Laplace equation when
using the UT or LM formulation for the Neumann
problem but have three rigid body modes of bihamonic
equation using the six boundary integral formulations
for the free problem. Futhermore, we have determined
the number of degenerate scales in each formulation.
For the former five boundary integral formulations, we
have at least one degenerate scale and have three at
most. Regarding to the m� v formulation, the degen-
erate scales disappear for constrained problems but rigid
body modes are present for free problems. That is to say,
we can adopt it to solve the biharmonic equation with-
out any risk of degenerate scales in sacrifice of more
complex kernels.

Appendix A Degenerate kernels for the sixteen kernel
functions

Uðs;xÞ¼

UIðs;xÞ¼q2ð1þ lnRÞþR2 lnR�Rqð1þ2 lnRÞ

cosðh�/Þ�
P1
m¼1

1
mðmþ1Þ

qmþ2

Rm cos½mðh�/Þ�

þ
P1
m¼2

1
mðm�1Þ

qm

Rm�2 cos½mðh�/Þ�;R�q

UEðs;xÞ¼R2ð1þ lnqÞþq2 lnq

�qRð1þ2 lnqÞcosðh�/Þ

�
P1
m¼1

1
mðmþ1Þ

Rmþ2

qm cos½mðh�/Þ�

þ
P1
m¼2

1
mðm�1Þ

Rm

qm�2 cos½mðh�/Þ�;q>R

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Uhðs; xÞ ¼

UI
hðs; xÞ ¼ 2qð1þ ln RÞ � Rð1þ 2 ln RÞ

cosðh� /Þ �
P1
m¼1

mþ2
mðmþ1Þ

qmþ1

Rm cos½mðh� /Þ�

þ
P1
m¼2

1
m�1

qm�1

Rm�2 cos½mðh� /Þ�;R � q

UE
h ðs; xÞ ¼ R2

q þ qð1þ 2 ln qÞ

�Rð3þ 2 ln qÞ cosðh� /Þ

þ
P1
m¼1

1
mþ1

Rmþ2

qmþ1 cos½mðh� /Þ�

�
P1
m¼2

m�2
mðm�1Þ

Rm

qm�1 cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Umðs; xÞ ¼

UI
mðs; xÞ ¼ 2ð1þ mÞð1þ ln RÞ
þ
P1
m¼1

mðm�1Þ�2ðmþ1Þ
m

qm

Rm cos½mðh� /Þ�

þ
P1
m¼2
ð1� mÞ qm�2

Rm�2 cos½mðh� /Þ�;R > q

UE
mðs; xÞ ¼ R2

q2 ðm� 1Þ þ ð3þ 2 ln qÞ
þmð1þ 2 ln qÞ � 2R

q ð1þ mÞ cosðh� /Þ

þ
P1
m¼1
ðm� 1Þ Rmþ2

qmþ2 cos½mðh� /Þ�

þ
P1
m¼2

mð1�mÞ�2ð1þmÞ
m

Rm

qm cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Umðs;xÞ¼

UI
m ðs;xÞ¼

P1
m¼1
ðm�4�mmÞqm�1

Rm cos½mðh�/Þ�

þ
P1
m¼2

mð1� mÞ qm�3

Rm�2 cos½mðh�/Þ�;R> q

UE
m ðs;xÞ¼ 4

qþ
P1
m¼1

mðm�1ÞRmþ2

qmþ3 cos½mðh�/Þ�

þ
P1
m¼2
ð�mmþmþ4Þ Rm

qmþ1 cos½mðh�/Þ�; q>R

8>>>>>>>>>><
>>>>>>>>>>:

Hðs; xÞ ¼

HIðs; xÞ ¼ q2

R þ Rð1þ 2 ln RÞ � qð3þ 2 ln RÞ
cosðh� /Þ þ

P1
m¼1

1
mþ1

qmþ2

Rmþ1 cos½mðh� /Þ�

�
P1
m¼2

m�2
mðm�1Þ

qm

Rm�1 cos½mðh� /Þ�;R � q

HEðs; xÞ ¼ 2Rð1þ ln qÞ � qð1þ 2 ln qÞ
cosðh� /Þ �

P1
m¼1

mþ2
mðmþ1Þ

Rmþ1

qm cos½mðh� /Þ�

þ
P1
m¼2

1
m�1

Rm�1

qm�2 cos½mðh� /Þ�;q > R

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Hhðs; xÞ ¼

HI
hðs; xÞ ¼

2q
R � ð3þ 2 ln RÞ cosðh� /Þ

þ
P1
m¼1

mþ2
mþ1

qmþ1

Rmþ1 cos½mðh� /Þ�

�
P1
m¼2

m�2
m�1

qm�1

Rm�1 cos½mðh� /Þ�;R � q

HE
h ðs; xÞ ¼ 2R

q � ð3þ 2 ln qÞ cosðh� /Þ

þ
P1
m¼1

mþ2
mþ1

Rmþ1

qmþ1 cos½mðh� /Þ�

�
P1
m¼2

m�2
m�1

Rm�1

qm�1 cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Hmðs; xÞ ¼

HI
mðs; xÞ ¼ 2

R ð1þ mÞ �
P1
m¼1
½mðm� 1Þ

�2ðmþ 1Þ� qm

Rmþ1 cos½mðh� /Þ�

�
P1
m¼2
ð1� mÞðm� 2Þ qm�2

Rm�1 cos½mðh� /Þ�;
R > q

HE
mðs; xÞ ¼ 2R

q2 ðm� 1Þ � 2
q ð1þ mÞ cosðh� /Þ

þ
P1
m¼1
ðmþ 2Þðm� 1Þ Rmþ1

qmþ2 cos½mðh� /Þ�

þ
P1
m¼2
½mð1� mÞ � 2ð1þ mÞ� Rm�1

qm

cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:



Hmðs; xÞ ¼

HI
mðs; xÞ ¼ �

P1
m¼1

mðm� 4� mmÞ qm�1

Rmþ1

cos½mðh� /Þ� �
P1
m¼2

mðm� 2Þð1� mÞ
qm�3

Rm�1 cos½mðh� /Þ�;R > q

HE
m ðs; xÞ ¼

P1
m¼1

mðmþ 2Þðm� 1Þ Rmþ1

qmþ3

cos½mðh� /Þ� þ
P1
m¼2

mð�mmþ mþ 4Þ
Rm�1

qmþ1 cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Mðs; xÞ ¼

MIðs; xÞ ¼ ðm� 1Þ q2

R2 þ ðmþ 3Þ þ 2ðmþ 1Þ

ln R� ðmþ 1Þ 2qR cosðh� /Þ þ
P1
m¼1
ðm� 1Þ

qmþ2

Rmþ2 cos½mðh� /Þ� þ
P1
m¼2

mð1�mÞ�2ð1þmÞ
m

qm

Rm

cos½mðh� /Þ�;R � q
MEðs; xÞ ¼ 2ð1þ mÞð1þ ln qÞ
þ
P1
m¼1

mðm�1Þ�2ðmþ1Þ
m

Rm

qm cos½mðh� /Þ�

þ
P1
m¼2
ð1� mÞ Rm�2

qm�2 cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Mhðs; xÞ ¼

MI
hðs; xÞ ¼

2qðm�1Þ
R2 � 2ðmþ1Þ

R cosðh� /Þ

þ
P1
m¼1
ðm� 1Þðmþ 2Þ qmþ1

Rmþ2 cos½mðh� /Þ�

þ
P1
m¼2
½mð1� mÞ � 2ð1þ mÞ� qm�1

Rm

cos½mðh� /Þ�;R > q

ME
h ðs; xÞ ¼

2ð1þmÞ
q �

P1
m¼1
ðmðm� 1Þ

�2ðmþ 1ÞÞ Rm

qmþ1 cos½mðh� /Þ� þ
P1
m¼2
½ð1� mÞ

ð�mþ 2Þ� Rm�2

qm�1 cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Mmðs; xÞ ¼

MI
mðs; xÞ ¼

2ðm2�1Þ
R2 þ

P1
m¼1
½mðm� 1Þ � 2ðmþ 1Þ�

ðmþ 1Þð1� mÞ qm

Rmþ2 cos½mðh� /Þ�

þ
P1
m¼2
ð1� mÞðm� 1Þ½mð1� mÞ � 2ðmþ 1Þ�

qm�2

Rm cos½mðh� /Þ�;R � q

ME
mðs; xÞ ¼

2ðm2�1Þ
q2 þ

P1
m¼1
½mðm� 1Þ

�2ðmþ 1Þ�ðmþ 1Þð1� mÞ Rm

qmþ2

cos½mðh� /Þ� þ
P1
m¼2
ð1� mÞðm� 1Þ

½mð1� mÞ � 2ðmþ 1Þ� Rm�2

qm cos½mðh� /Þ�;
q > R

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Mmðs; xÞ ¼

MI
m ðs; xÞ ¼

P1
m¼1

mðmþ 1Þð1� mÞ½mð1� mÞ

�4� qm�1

Rmþ2 cos½mðh� /Þ� þ
P1
m¼2
ð1� mÞ

mðm� 1Þ½mð1� mÞ � 2ð1þ mÞ� qm�3

Rm

cos½mðh� /Þ�;R > q

ME
m ðs; xÞ ¼

P1
m¼1

mðmþ 1Þð1� mÞ½mðm� 1Þ

�2ðmþ 1Þ� Rm

qmþ3 cos½mðh� /Þ� þ
P1
m¼2
ð1� mÞ

mðm� 1Þ½mð1� mÞ þ 4� Rm�2

qmþ1 cos½mðh� /Þ�;
q > R

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

V ðs; xÞ ¼

V Iðs; xÞ ¼ 4
Rþ

P1
m¼1

mðm� 1Þ qmþ2

Rmþ3 cos½mðh�/Þ�

þ
P1
m¼2
ðmþ 4�mmÞ qm

Rmþ1 cos½mðh�/Þ�;R > q

V Eðs; xÞ ¼
P1
m¼1
½mð1� mÞ � 4� Rm�1

qm

cos½mðh�/Þ� þ
P1
m¼2

mð1� mÞ Rm�3

qm�2

cos½mðh�/Þ�;q > R

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Vhðs; xÞ ¼

V I
h ðs; xÞ ¼

P1
m¼1

mðmþ 2Þðm� 1Þ qmþ1

Rmþ3

cos½mðh� /Þ� þ
P1
m¼2

mðmþ 4� mmÞ qm�1

Rmþ1

cos½mðh� /Þ�;R > q

V E
h ðs; xÞ ¼ �

P1
m¼1

m½mð1� mÞ � 4� Rm�1

qmþ1

cos½mðh� /Þ� þ
P1
m¼2

mð�mþ 2Þð1� mÞ Rm�3

qm�1

cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Vmðs; xÞ ¼

V I
mðs; xÞ ¼

P1
m¼1

mðmþ 1Þð1� mÞ½mðm� 1Þ

�2ðmþ 1Þ� qm

Rmþ3 cos½mðh� /Þ�

þ
P1
m¼2

mðm� 1Þð1� mÞ½mð1� mÞ þ 4� qm�2

Rmþ1

cos½mðh� /Þ�;R > q

V E
m ðs; xÞ ¼

P1
m¼1

mðmþ 1Þð1� mÞ½mð1� mÞ

�4� Rm�1

qmþ2 cos½mðh� /Þ� þ
P1
m¼2

mðm� 1Þ

ð1� mÞ½mð1� mÞ � 2ðmþ 1Þ� Rm�3

qm

cos½mðh� /Þ�; q > R

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:



Vmðs; xÞ ¼

V I
m ðs; xÞ ¼

P1
m¼1

m2ðmþ 1Þð1� mÞ½mð1� mÞ

�4� qm�1

Rmþ3 cos½mðh� /Þ� þ
P1
m¼2

m2ðm� 1Þ

ð1� mÞ½mð1� mÞ þ 4� qm�3

Rmþ1 cos½mðh� /Þ�;
R � q

V E
m ðs; xÞ ¼

P1
m¼1

m2ðmþ 1Þð1� mÞ½mð1� mÞ

�4� Rm�1

qmþ3 cos½mðh� /Þ� þ
P1
m¼2

m2ðm� 1Þ

ð1� mÞ½mð1� mÞ þ 4� Rm�3

qmþ1 cos½mðh� /Þ�;
q > R

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

It is noted that the properties of series expansion in
terms of degenerate kernel should be taken care when q
is equal to R. The discussions for q ¼ R are shown be-
low:

(1) The kernels (U , Hh, Mm, Vm) are symmetric since
q ¼ Rþ and q ¼ R� result in the same expression of
q ¼ R.

(2) The Uh, H and M kernels are continuous when x
moves across the boundary. Therefore, the interior
kernel is equal to the exterior one when R is equal to
q.

(3) For the other kernels, they have free terms when x
moves across the boundary. We can not say any-
thing at q ¼ R since the potential is not continuous
[16].
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31. Vodička R, Mantič V (2004) On Invertibility of elastic single-
layer potential operator. J Elasticity 74:147–173

32. Wu CS (2004) Degenerate scale analysis for membrane and
plate problems using the meshless method and boundary ele-
ment method, Master Thesis, Department of Harbor and
River Engineering, National Taiwan Ocean University, Kee-
lung, R.O.C


