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Abstract

The boundary integral equation approach has been shown to suffer a nonunique solution when the geometry is equal to a degenerate scale

for a potential problem. In this paper, the degenerate scale problem in boundary element method for the two-dimensional Laplace equation is

analytically studied in the continuous system by using degenerate kernels and Fourier series instead of using discrete system using circulants

[Engng Anal. Bound. Elem. 25 (2001) 819]. For circular and multiply-connected domain problems, the rank-deficiency problem of the

degenerate scale is solved by using the combined Helmholtz exterior integral equation formulation (CHEEF) concept. An additional

constraint by collocating a point outside the domain is added to promote the rank of influence matrix. Two examples are shown to

demonstrate the numerical instability using the singular integral equation for circular and annular domain problems. The CHEEF concept is

successfully applied to overcome the degenerate scale and the error is suppressed in the numerical experiment. q 2002 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Practical engineers [1] and academic researchers [2] have

paid attention to applications of the boundary element

method (BEM) in recent years. Although BEM is recog-

nized as an acceptable tool, some pitfalls still exist, e.g.

fictitious frequency and degenerate scale. A large amount of

papers have been published on fictitious frequency [3–6],

only a few researchers paid attention to the degenerate-scale

problem. It is well known that rigid body motion test is

employed to examine the singular matrices of strongly

singular kernels and hypersingular kernels for the problems

without degenerate boundaries. The singularity occurs

physically and mathematically in the sense that the

nonunique solution for the singular matrix includes a rigid

body term for the interior Neumann problem. However, the

influence matrix of the weakly singular kernel may be

singular for the Dirichlet problem [7] when geometry is

special. The nonunique solution is not physically realizable

but results from the zero singular value of the influence

matrix in the integral formulation. For example, the

nonunique solution of a unit circle has been noted by

Petrovsky [8] and by Jaswon and Symm [9]. The special

geometry which results in a nonunique solution for a

potential problem is called ‘degenerate scale’. The term

‘scale’ stems from the fact that the numerical instability of a

unit circle of radius 1 m (1 cm) disappears if the radius of

100 cm (0.01 m) is used in the BEM implementation. In real

implementation, we need to avoid the number one for the

circular radius using the normalized scale. The numerical

difficulties due to nonuniqueness of solutions have been

solved by the necessary and sufficient boundary integral

equation (NSBIE) [10–13] and boundary contour method

[14]. However, the boundary conditions in their cases are

either the Dirichlet or the mixed type and must be constant

along the circular boundary. Also, the degenerate scale of

multiply-connected domain problems was discussed for the

Laplace equation by Tomlinson et al. [15]. The degenerate

scale for the multiply-connected biharmonic problems was

also studied by Mitra and Das [16]. Chen et al. [17] studied
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the degenerate scale for the simply-connected and multiply-

connected problems by using the degenerate kernels and

circulants in a discrete system for circular and annular cases.

Mathematically speaking, the singularity pattern distributed

along a ring boundary resulting in a zero field introduces a

degenerate scale. This concept was also extended to study

the spurious eigenvalues for annular cavities by Chen et al.

[18]. A similar application to the two-dimensional elasticity

was addressed in Ref. [19]. A rigorous study was proposed

mathematically by Kuhn [20] and Constanda [21,22] for the

occurring mechanism of the degenerate scale. In the

previous work [17], degenerate kernels and circulants

were employed to study the occurring mechanism of

degenerate scale in the discrete system of BEM. One

alternative to treat the problem is to superimpose a rigid

body term in the fundamental solution. Although the

degenerate scale problem is circumvented for the special

geometry, the degenerate scale moves to another size in

reality. Also, hypersingular formulation can shift the zero

eigenvalue in sacrifice of determining the Hadamard

principal value. To seek a unified method for the degenerate

scale problem is not trivial.

It is well known that rank deficiency is always

encountered for the exterior and interior acoustic problems

using BEM. Schenck [3] proposed a combined Helmholtz

interior integral equation formulation (CHIEF) method,

which is easy to implement by applying the integral

equation on a number of points located outside the domain

of interest. It is efficient to overcome the nonunique solution

problem in case of fictitious frequency, but it still has some

drawbacks since the chosen point may fail. How to

determine the number of points and how to choose their

positions was discussed by Chen et al. [6]. In a similar way,

the combined Helmholtz exterior integral equation formu-

lation (CHEEF) concept [23] has been employed to sort out

the spurious eigenvalues by adding constraints from the

points outside the domain in the multiple reciprocity BEM

[24], real-part BEM [25] and imaginary-part BEM [26]. The

CHEEF concept was successfully applied to filter out the

spurious eigenvalues [23].

In this study, we will focus on the analytical investigation

of phenomenon of degenerate scales in the BEM for the

two-dimensional Laplace equation by using degenerate

kernels and Fourier series expansion. Also, we will employ

the CHEEF concept to overcome the nonunique solutions in

numerical implementation. The optimum number for the

collocating point will be studied analytically and verified

numerically. By using the CHEEF technique, the missing

constraint will be found. Two examples, a circular (simple

connected) region and an annular (multi-connected) region,

will be demonstrated for the degenerate scale problems.

2. Mathematical analysis of the degenerate scale for a

circular problem

The governing equation for a potential problem is the

Laplace equation as follows

7 2uðxÞ ¼ 0; x [ De ð1Þ

where 7 2 is the Laplace operator, and Ds is the simply-

connected domain of the problem. We consider the problem

with a circular region of a radius a as shown in Fig. 1(a). For

simplicity, the boundary condition is the Dirichlet type.

Based on the boundary integral equation, a null field

equation is considered as follows

0 ¼
ð

B
Tðs; xÞuðsÞdBðsÞ2

ð
B

Uðs; xÞtðsÞdBðsÞ; x [ De

ð2Þ

where x is the field point, s is the source point, the kernel

function, Uðs; xÞ ¼ ln r; r is the distance between x and s,

Tðs; xÞ ¼ ›Uðs; xÞ=›ns; tðsÞ ¼ ›uðsÞ=›ns and De is the

exterior domain of the problem. The null-field formulation

can avoid the jump term since the collocation point is

outside the domain. The degenerate kernel can distinguish

the inside and outside points for the two-point fundamental

Fig. 1. (a) Potential problem with a Dirichlet boundary condition of a

circular region. (b) Potential problem of a circular region with mixed

boundary conditions.
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solution. The same boundary integral equations can be

obtained by either surface boundary integral equation or the

null-field integral equation.

Based on Stanley’s assumption for a simply-connected

interior problem in the continuous system [27], the field

solution can be expressed by

uðr; uÞ ¼ a0 þ
X1
n¼1

anr
n cosðnuÞ þ bnr

n sinðnuÞ
� �

;

0 , r , a; 0 # u , 2p

ð3Þ

By setting r ¼ a; the field solution u reduces to the

boundary data, where a is the radius of domain. The

secondary boundary quantity along the circular boundary

can be expanded in terms of Fourier series,

tða; uÞ ¼ p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞÞ; 0 , u , 2p

ð4Þ

Based on the separate properties for the kernels, the kernel

functions in Eq. (2) can be expanded into degenerate forms

as shown below [25,28–30]

Uðs; xÞ

¼

UiðR; u; r;fÞ ¼ ln R 2
X1
m¼1

1

m

r

R

� �m

cosðmðu2 fÞÞ; R . r

UeðR; u; r;fÞ ¼ ln r2
X1
m¼1

1

m

R

r

� �m

cosðmðu2 fÞÞ; r . R

8>>>><
>>>>:

ð5Þ

Tðs; xÞ

¼

T iðR; u; r;fÞ ¼
1

R
þ
X1
m¼1

rm

Rmþ1

� �
cosðmðu2 fÞÞ; R . r

TeðR; u; r;fÞ ¼ 2
X1
m¼1

Rm21

rm

 !
cosðmðu2 fÞÞ; r . R

8>>>><
>>>>:

ð6Þ

where the superscripts ‘i’ and ‘e’ denotes the interior

domain ðR . rÞ and the exterior domain ðr . RÞ; ðr;fÞ and

ðR; uÞ are the polar coordinates for x and s, respectively. It

must be noted that the superscripts i and e are used for the

interior and exterior problems to avoid the source terms,

respectively. Substitution of the T e and U e kernels of the

degenerate forms of Eqs. (5) and (6), and the boundary

densities u, t of Eqs. (3) and (4) into Eq. (2) givesð2p

0
2
X1
m¼1

am21

rm
cosðmðu2 fÞÞ

" #

a0 þ
X1
n¼1

anan cosðnuÞ þ bnan sinðnuÞ
� �" #

a du

¼
ð2p

0
ln r2

X1
m¼1

1

m

a

r

� �m

cosðmðu2 fÞÞ

" #

p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞÞ

" #
a du: ð7Þ

By using the orthogonal properties of Fourier bases, Eq. (7)

can be formulated to

pað2p0 ln r2 0·a0Þ

þ pa
X1
n¼1

R

r

� �n

anan21 2
pn

n

� �
cosðnfÞ

þ pa
X1
n¼1

R

r

� �n

bnan21 2
qn

n

� �
sinðnfÞ ¼ 0: ð8Þ

Since the collocation point ðaþ;fÞ is arbitrary along the

circular boundary ð0 # f , 2pÞ; we have

p0 ¼
0·a0

2 ln aþ
; pn ¼ nan21an; qn ¼ nan21bn;

n ¼ 1; 2; 3;…

ð9Þ

When the radius a is equal to one, the coefficient of p0 in Eq.

(9) is zero division by zero. It indicates that the solution is

nonunique when a is the specific magnitude which is equal

to the degenerate scale. In this case, we can choose an

exterior point to solve the degenerate scale problem by

using the CHEEF technique.

By choosing an exterior point x1 with the polar

coordinate of ðr1;f1Þ; substitution of the T e and U e kernels

of degenerate forms of Eqs. (5) and (6), and the boundary

densities u, t of Eqs. (3) and (4) into Eq. (2), gives

ð2p

0
2
X1

m¼1

am21

rm
1

cosðmðu2 f1ÞÞ

" #

a0 þ
X1
n¼1

anan cosðnuÞ þ bnan sinðnuÞ
� �" #

a du

¼
ð2p

0
ln r1 2

X1
m¼1

1

m

a

r1

� �m

cosðmðu2 f1ÞÞ

" #

p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞÞ

" #
a du: ð10Þ

Eq. (10) can be formulated to

pað2p0 ln r1 2 0·a0Þ

þ pa
X1
n¼1

a

r1

� �n

anan21 2
pn

n

� �
cosðnfÞ

þ pa
X1
n¼1

a

r1

� �n

bnan21 2
qn

n

� �
sinðnfÞ ¼ 0: ð11Þ

When the radius of the collocating point is greater than one

ðr1 . 1Þ; the coefficient of p0, ln r1, is not zero in Eq. (11).

Therefore, we can avoid the degenerate scale in the circular

domain problems by using the CHEEF technique.
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3. Mathematical analysis of the degenerate scale for an

annular problem

An annular domain composed of two concentric circles is

shown in Fig. 2, and the governing equation is

72uðxÞ ¼ 0; x [ Dm ð12Þ

where Dm is the multiply-connected domain and the well-

posed boundary conditions are

uðxÞ ¼ u1 or tðxÞ ¼ t1; x [ B1 ðr ¼ R1Þ ð13Þ

uðxÞ ¼ u2 or tðxÞ ¼ t2; x [ B2 ðr ¼ R2Þ ð14Þ

For the multiply-connected problems, Stanley’s assumption

for the solution of a multiply-connected interior problem

gives [27]

uðr; uÞ ¼ a0 þ b0 ln r þ

X1
n¼1

anrn þ bnr2n
� �

cosðnuÞ þ cnrn þ dnr2n
� �

sinðnuÞ
� �

;

R1 # r # R2; 0 # u , 2p

ð15Þ

where R1 and R2 are the inner and the outer radii,

respectively, a0, b0, an, bn, cn and dn are the coefficients.

Substituting R1 or R2 for r into Eq. (15), we have the

boundary data

u1 ¼ a0 þ b0 ln R1 þ
X1
n¼1

��
anRn

1 þ bnR2n
1

�
cosðnuÞ

þ
�
cnRn

1 þ dnR2n
1

�
sinðnuÞ

�
¼ �a0 þ

X1
n¼1

½�an cosðnuÞ þ �bn sinðnuÞ�; ð16Þ

u2 ¼ a0 þ b0 ln R2 þ
X1
n¼1

��
anRn

2 þ bnR2n
2

�
cosðnuÞ

þ
�
cnRn

2 þ dnR2n
2

�
sinðnuÞ

�
¼ �c0 þ

X1
n¼1

½�cn cosðnuÞ þ �dn sinðnuÞ�; ð17Þ

where u1 and u2 are the boundary data for the primary field

as shown in Eqs. (13) and (14). The boundary data for the

secondary field can be expanded in Fourier series,

t1ðxÞ ¼ p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞ; x [ B1 ð18Þ

t2ðxÞ ¼ v0 þ
X1
n¼1

ðvn cosðnuÞ þ wn sinðnuÞÞ; x [ B2 ð19Þ

where pn, qn, vn and wn are the Fourier coefficients. The

exterior domain includes the inner domain Di and the outer

domain De for the multiply-connected problem as shown in

Fig. 2. The null-field equation is

0 ¼
ð

B1

Tðs; xÞu1ðsÞdBðsÞ2
ð

B1

Uðs; xÞt1ðsÞdB1ðsÞ

þ
ð

B2

Tðs; xÞu2ðsÞdBðsÞ2
ð

B2

Uðs; xÞt2ðsÞdB2ðsÞ;

x [ De

ð20Þ

where t1ðsÞ ¼ ›u1ðsÞ=›ns and t2 ¼ ›u2ðsÞ=›ns:
By moving the point x to the boundary B2

1 ; where u1 and

u2 are specified, t1 and t2 are unknown, substitution of the T i

and U i kernels of degenerate forms in Eqs. (5) and (6), and

the boundary densities u, t of Eqs. (16)–(19) into Eq. (20),

gives

ð2p

0

1

R1

þ
X1
m¼1

rm

Rmþ1
1

cosðmðu2 fÞÞ

" #

�a0 þ
X1
n¼1

ð�an cosðnuÞ þ �bn sinðnuÞÞ

" #
R1 du

2
ð2p

0
ln R1 2

X1
m¼1

1

m

r

R1

� �m

cosðmðu2 fÞÞ

" #

p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞÞ

" #
R1 du

þ
ð2p

0

1

R2

þ
X1
m¼1

rm

Rmþ1
2

cosðmðu2 fÞÞ

" #

�c0 þ
X1
n¼1

ð�cn cosðnuÞ þ �dn sinðnuÞÞ

" #
R2 du

2
ð2p

0
ln R2 2

X1
m¼1

1

m

r

R2

� �m

cosðmðu2 fÞÞ

" #

v0 þ
X1
n¼1

ðvn cosðnuÞ þ wn sinðnuÞÞ

" #
R2 du¼ 0: ð21Þ

By approaching the collocation point x to ðR2
1 ;fÞ; Eq. (21)Fig. 2. Potential problem of an annular region.
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can be formulated to

pR1

2�a0

R1

þ
X1
n¼1

R2
1

� �n
Rnþ1

1

ð�an cosðnfÞ þ �bn sinðnfÞÞ

" #
2 pR1

2p0 ln R1 2
X1
n¼1

R2
1

R1

� �n pn

n
cosðnfÞ þ

qn

n
sinðnfÞ

� �" #

þ pR2

2�c0

R2

þ
X1
n¼1

R2
1

� �n
Rnþ1

2

ð�cn cosðnfÞ þ �dn sinðnfÞÞ

" #

2 pR2

2v0 ln R2 2
X1
n¼1

R2
1

R2

� �n vn

n
cosðnfÞ þ

wn

n
sinðnfÞ

� �" #

¼ 0: ð22Þ

By moving the point x to the boundary Bþ
2 ; where u1 and u2

are specified, t1 and t2 are unknown, substitution of the T e

and U e kernels of degenerate forms in Eqs. (5) and (6), and

the boundary densities u, t of Eqs. (16)–(19) into Eq. (20),

givesð2p

0
2
X1
m¼1

Rm21
1

rm
cosðmðu2 fÞÞ

" #

�a0 þ
X1
n¼1

�an cosðnuÞ þ �bn sinðnuÞ

" #
R1 du

2
ð2p

0
ln r2

X1
m¼1

1

m

R1

r

� �m

cosðmðu2 fÞÞ

" #

p0 þ
X1
n¼1

pn cosðnuÞ þ qn sinðnuÞ

" #
R1 du

þ
ð2p

0
2
X1
m¼1

Rm21
2

rm
cosðmðu2 fÞÞ

" #

�c0 þ
X1
n¼1

�cn cosðnuÞ þ �dn sinðnuÞ

" #
R2 du

2
ð2p

0
ln r2

X1
m¼1

1

m

R2

r

� �m

cosðmðu2 fÞÞ

" #

£ v0 þ
X1
n¼1

vn cosðnuÞ þ wn sinðnuÞ

" #
R2 du ¼ 0: ð23Þ

By approaching the collocation point x to ðRþ
2 ;fÞ; Eq. (23)

can be formulated to

pR1 0·�a0 2
X1
n¼1

Rn21
1

Rþ
2

� �n ð�an cosðnfÞ þ �bn sinðnfÞÞ

" #
2 pR1

2p0 ln Rþ
2 2

X1
n¼1

R1

Rþ
2

 !n
pn

n
cosðnfÞ þ

qn

n
sinðnfÞ

� �" #

þ pR2 0·�c0 2
X1
n¼1

Rn21
2

Rþ
2

� �n ð�cn cosðnfÞ þ �dn sinðnfÞÞ

" #

2 pR2

2v0 ln Rþ
2 2

X1
n¼1

R2

Rþ
2

 !n
vn

n
cosðnfÞ þ

wn

n
sinðnfÞ

� �" #

¼ 0: ð24Þ

For this annular problem subject to Dirichlet boundary

condition, u1 and u2 are specified. The normal fluxes, t1 and

t2, are unknown. According to Eqs. (22) and (24), we can

determine the coefficients of p0 and v0 by

p0 ¼
ð�a0 þ �c0Þln Rþ

2

R1ðln R1 2 ln R2Þln Rþ
2

;

v0 ¼
ð�a0 þ �c0Þln Rþ

2

R2ðln R2 2 ln R1Þln Rþ
2

:

ð25Þ

No matter what the value of the inner radius R1 is, it does not

contribute any singularity. However, the outer radius R2 of

unit length causes the failure in determining the coefficients

of p0 and v0 in Eq. (25). Therefore, the degenerate scale

occurs when the value of outer radius is one.

In order to solve the ill-posed problem, we may try either

a point x1 in the domain Di, or a point x2 in the domain De to

solve the degenerate scale problem. How to select the

collocation point to overcome the degenerate scale by using

the CHIEF concept will be investigated as follows.

By choosing a point x1 with the polar coordinate ðr1;f1Þ

in the domain Di as shown in Fig. 3(a), substitution of the

degenerate kernels of T i, U i of Eqs. (5) and (6), and the

Fig. 3. Interior (CHIEF) point and exterior (CHEEF) point.
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boundary densities u, t of Eqs. (16)–(19) into Eq. (20), givesð2p

0

1

R1

þ
X1
m¼1

rm
1

Rmþ1
1

cosðmðu2 f1ÞÞ

" #

�a0 þ
X1
n¼1

ð�an cosðnuÞ þ �bn sinðnuÞÞ

" #
R1 du

2
ð2p

0
ln R1 2

X1
m¼1

1

m

r1

R1

� �m

cosðmðu2 f1ÞÞ

" #

p0 þ
X1
n¼1

ðpn cosðnuÞ þ qn sinðnuÞÞ

" #
R1 du

þ
ð2p

0

1

R2

þ
X1
m¼1

rm
1

Rmþ1
2

cosðmðu2 f1ÞÞ

" #

�c0 þ
X1
n¼1

ð�cn cosðnuÞ þ �dn sinðnuÞÞ

" #
R2 du

2
ð2p

0
ln R2 2

X1
m¼1

1

m

r1

R2

� �m

cosðmðu2 f1ÞÞ

" #

v0 þ
X1
n¼1

ðvn cosðnuÞ þ wn sinðnuÞÞ

" #
R2 du ¼ 0: ð26Þ

Eq. (26) can be formulated to

pR1

2�a0

R1

þ
X1
n¼1

rn
1

Rnþ1
1

ð�an cosðnf1Þ þ �bn sinðnf1ÞÞ

" #
2 pR1

2p0 ln R1 2
X1
n¼1

r1

R1

� �n pn

n
cosðnf1Þ þ

qn

n
sinðnf1Þ

� �" #

þ pR2

2�c0

R2

þ
X1
n¼1

rn
1

Rnþ1
2

ð�cn cosðnf1Þ þ �dn sinðnf1ÞÞ

" #

2 pR2

2v0 ln R2 2
X1
n¼1

r1

R2

� �n vn

n
cosðnf1Þ þ

wn

n
sinðnf1Þ

� �" #

¼ 0: ð27Þ

When the value of outer radius R2 is equal to one, the

coefficient of v0 cannot be determined in Eq. (27). There-

fore, CHEEF concept fails to deal with the degenerate scale

problems if a point is chosen inside the inner circle.

By choosing another point x2 with the polar

coordinate ðr2;f2Þ in the De domain as shown in

Fig. 3(b), substitution of the degenerate kernels of T e,

U e in Eqs. (5) and (6), and the boundary densities u, t

of Eqs. (16)–(19) into Eq. (20) givesð2p

0
2
X1
m¼1

Rm21
1

rm
2

cosðmðu2 f2ÞÞ

" #

�a0 þ
X1
n¼1

�an cosðnuÞ þ �bn sinðnuÞ

" #
R1 du

2
ð2p

0
ln r2 2

X1
m¼1

1

m

R1

r2

� �m

cosðmðu2 f2ÞÞ

" #

p0 þ
X1
n¼1

pn cosðnuÞ þ qn sinðnuÞ

" #
R1 du

þ
ð2p

0
2
X1
m¼1

Rm21
2

rm
2

cosðmðu2 f2ÞÞ

" #

�c0 þ
X1
n¼1

�cn cosðnuÞ þ �dn sinðnuÞ

" #
R2 du

2
ð2p

0
ln r2 2

X1
m¼1

1

m

R2

r2

� �m

cosðmðu2 f2ÞÞ

" #

£ v0 þ
X1
n¼1

vn cosðnuÞ þ wn sinðnuÞ

" #
R2 du ¼ 0: ð28Þ

Eq. (28) can be formulated to

pR1 0·�a0 2
XN
n¼1

Rn21
1

rn
2

ð�an cosðnf2Þ þ �bn sinðnf2ÞÞ

" #
2 pR1

2p0 ln r2 2
X1
n¼1

R1

r2

� �n pn

n
cosðnf2Þ þ

qn

n
sinðnf2Þ

� �" #

þ pR2 0·�c0 2
X1
n¼1

Rn21
2

rn
2

ð�cn cosðnf2Þ þ �dn sinðnf2ÞÞ

" #

2 pR2

2v0 ln r2 2
X1
n¼1

R2

r2

� �n vn

n
cosðnf2Þ þ

wn

n
sinðnf2Þ

� �" #

¼ 0: ð29Þ

By collocating x2 point outside the outer circle boundary

ðr2 . 1Þ the coefficients of p0 and v0 can be easily

determined in Eq. (29), even though the value of outer

radius R2 is one. Therefore, the degenerate scale can be

overcome in the annular problems by using the CHEEF

point in the De domain.
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4. Numerical examples for the circular and annular

cases

4.1. Circular case

We consider the interior potential problem of a circular

domain (Fig. 1(b)) with the mixed type condition as follows

tðr; uÞ ¼ cosðuÞ; r ¼ a; 2p , u ,
1

2
p; ðr; uÞ [ Bt

ð30Þ

uðr; uÞ ¼ a cosðuÞ; r ¼ a;
1

2
p , u , p; ðr; uÞ [ Bu

ð31Þ

where Bu and Bt are the specified Dirichlet and Neumann

boundaries. In the BEM mesh, 10 elements are distributed

uniformly on Bt and 10 elements on Bu. The analytical

solutions are uðr; uÞ ¼ a cosðuÞ and tðr; uÞ ¼ cosðuÞ: The

numerical results are shown in Tables 1 and 2. The

degenerate scale occurs numerically at a ¼ 1:012 [17]

instead of the analytical value a ¼ 1: It is found that the

errors of three approaches, UT equation, hypersingular

formulation for the LM equation and CHEEF concept, are

less than 5% error in case of the normal scale in Fig. 4.

However, it results in a great error of 25% by using the

singular formulation (UT equation) in case of the degenerate

scale in Fig. 5. Although the hypersingular formulation (LM

equation) can yield the solution more accurately (5.7%) as

shown in Table 2 and Fig. 5, the regularization technique is

required for hypersingularity. By employing the CHEEF

concept free of the hypersingularity, the error reduces to a

smaller one of 0.2% as shown in Fig. 5. Only one CHEEF

point is required to solve the problem more accurately

(0.2%) since rank is deficient by one in the degenerate scale

problems. For comparison, the result of singular equation by

adding a rigid body motion is also shown in Table 2.

4.2. Annular case

Given an annular problem with the mixed boundary

conditions as follows

u1ðxÞ ¼ 100; x [ B1 ð32Þ

t2ðxÞ ¼
100

R2 ln
R1

R2

; x [ B2 ð33Þ

Fig. 4. The error distribution for the potential problem with a circular region (a ¼ 2; normal scale).

Table 1

Numerical results for the potential problem with a circular region (a ¼ 2; normal scale)

u (8) Analytical solution Singular equation Hypersingular equation CHEEF method point: (5, 0)

u t u t u t u t

121.5 21.045 20.522 21.045 20.516 (1.1) 21.045 20.499 (4.4) 21.045 20.512 (1.9)

148.5 21.705 20.852 21.705 20.850 (0.2) 21.705 20.848 (0.4) 21.705 20.849 (0.4)

193.5 21.994 20.972 21.892 (5.1) 20.972 21.894 (5.0) 20.972 21.912 (4.1) 20.972

220.5 21.521 20.760 21.481 (2.6) 20.760 21.504 (1.1) 20.760 21.512 (0.6) 20.760

Data in parentheses denotes error, %.
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the analytical solution is [31]

uðrÞ ¼ u2 þ

ln
r

R2

ln
R1

R2

ðu1 2 u2Þ; R1 # r # R2 ð34Þ

where 2R1 ¼ R2 and u2 is the potential on B2. The same

number of elements on the internal and exterior circles are

adopted. The results are listed in Table 3, where 2N denotes

the number of elements. Since the problem is axisymmetric,

the observed point for the error can be at any place of the

circular boundary. Also the point error and average error are

the same. In Table 3, we find that the error of u2 and t1 are

very large in the case of the degenerate scale ðR2 ¼ 1Þ using

the singular formulation. The hypersingular equation fails to

solve the problem as predicted theoretically by Chen et al.

[17]. However, we can obtain the more accurate results by

choosing a point outside the outer circle. It is found that a

point inside the inner circle cannot reduce the error as

shown in Table 4 as predicted analytically. The additional

invalid CHIEF point does not improve the results but

deteriorates the solution since the weighting of the effective

point is reduced. By choosing a CHEEF point outside the

outer circle, the error of t1 is suppressed to a smaller value

for the degenerate case of R2 ¼ 1 as shown in Fig. 6. Also,

the results by adding a rigid body motion [17] and NSBIE

method [10] are compared with the present results in Table

3. Numerical instability is efficiently suppressed by using

the CHEEF concept in Table 4. The CHIEF point inside the

inner circle boundary cannot improve the accuracy.

However, one exterior CHEEF point can yield good results.

An extra exterior point does not contribute any more since

rank is deficient by only one as shown in Table 4.

5. Conclusions

In this paper, we have proved why degenerate scale is

embedded in the BEM for the two-dimensional Laplace

equation by using the degenerate kernels and Fourier series.

The proof of degenerate scale is not for a general geometry

but for two special cases. For the simply-connected domain

of a circular case with the Dirichlet boundary condition, the

radius of unit length is a degenerate scale if the singular

equation is used. In order to overcome the problem, CHEEF

technique was adopted. This method is more systematic

than the addition of a rigid body mode since the latter

method introduces another degenerate scale. No new

degenerate scale occurs by using the CHEEF technique.

For the multiply-connected domain with an annular region,

outer radius of unit length results in a nonunique solution. It

is found that only one CHEEF point is required to deal with

the problem efficiently. It is expected that no failure point

outside the outer circular boundary be encountered sinceT
ab
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Fig. 5. The error distribution for the potential problem with a circular region (a ¼ 1:012; degenerate scale).

Table 3

Numerical results for the potential problem with a multiply connected region by using the rigid body motion method and NSBIE method

2N R2 Analytical

solution

Singular

equation

ðU ¼ ln rÞ

Singular

equation ðU ¼

ln r þ 10Þ

Hypersingular

equation

ðU ¼ ln rÞ

Hypersingular

equation

ðU ¼ ln r þ 10Þ

NSBIE

u2 t1 u2 t1 u2 t1 u2 t1 u2 t1 u2 t1

16 1.0a 0 288.54 26.30 220.61 3.80 289.08 4.08 £ 108 171.78 24.94 £ 109 1113.98 23.94 289.54

2.0 0 144.27 1.10 148.64 3.81 144.52 9.56 £ 108 20.94 1.30 £ 109 186.015 22.49 142.27

48 1.0a 0 288.54 19.10 234.12 0.32 288.55 28.68 £ 108 834.96 28.68 £ 108 834.962 20.52 289.53

2.0 0 144.27 0.10 144.61 0.32 144.31 5.76 £ 109 21371.0 5.76 £ 108 21371.00 20.52 144.27

a Degenerate scale.

Table 4

Numerical results for the potential problem with a multiply connected region by using the CHEEF concept

2N R2 Analytical

solution

One interior point

(0.5, 0)

One exterior

point (4, 0)

One exterior

point (5, 3)

Two exterior

points (4, 0)

(5, 3)

Two exterior

points (4, 3)

(7, 9)

One interior and

one exterior point

(0.5, 0.5) (4, 6)

u2 t1 u2 t1 u2 t1 u2 t1 u2 t1 u2 t1 u2 t1

16 1.0a 0 288.54 27.1 363.2 1.9 286.9 1.7 287.5 1.6 287.9 1.5 288.2 216.5 325.6

2.0 0 144.27 1.5 146.5 1.6 146.8 1.5 146.3 1.7 145.7 1.6 145.3 1.5 145.9

48 1.0a 0 288.54 235.5 395.8 0.12 288.49 0.11 288.51 0.11 288.53 0.11 288.53 22.10 300.52

2.0 0 144.27 0.11 144.61 0.11 144.56 0.11 144.53 0.11 144.56 0.11 144.54 0.11 144.51

a Degenerate scale.
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rank is deficient by only one and no zero is found in the

complementary domain for the null-field solution.
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