

System for Vibro-Acoustic Analysis

LMS Numerical Technologies

A Few Words About Acoustics

Source

vibrating body speaker

Propagation

sound path & absorption

- airborne
- structure-borne
- mixed

Receiver

ear

Dealing with Vibration & Sound

Fluid-Structure Coupling

Sound induces vibration

Harmonic vs Transient Analysis

0 Frequency domain

- 4 Helmholtz equation
- 4 Harmonic or narrow-band excitations
- 4 Solution with **complex** variables

$$\nabla^2 \boldsymbol{p} + \boldsymbol{k}^2 \boldsymbol{p} = \boldsymbol{0}$$

0 **Time** domain

- 4 Wave equation
- 4 Transient (e.g. shock) and broad-band excitations
- 4 Solution with **real** variables

$$\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

Why Numerical Simulation ?

Usual Numerical Tools

0 (Semi-) Analytical Methods

- 4 Closed form solutions
- 4 Only for simple geometries

0 Finite Element Method (FEM)

4 Volume discretization into Finite Elements

0 Boundary Element Method (BEM)

- **4** Dicretization of bounding surface into Boundary Elements
- **0** Statistical Energy Methods (SEA)
 - 4 Energy exchanges between system components
- 0 Ray Methods
 - 4 Geometrical Acoustics
 - 4 RAYNOISE, MOSART

Why Acoustic Analysis ?

- 0 Acoustics becomes increasingly important
 - 4 Product quality
 - 4 Competitive advantage
 - 4 Part of design specifications
 - 4 Government regulations quality of Life
- **O** Analysis up-front in the design phase
 - 4 Concurrent engineering
 - 4 Early **interaction** with design engineers
 - 4 Evaluate design **alternatives**
 - 4 Reduce **prototyping**
 - 4 Significant cost and time savings

Typical Acoustic Analysis

- 0 Sound **radiation** from vibrating structures
- 0 Acoustic **reflection** and **diffraction** of sound waves
- 0 Sound transmission between fluid regions separated by a structural partition

0 Acoustics

- 4 Fluid behavior only
- 4 Boundary conditions
 - 8 panel velocities
 - 8 sound sources
 - 8 panel absorption

0 Vibro-acoustics

- 4 Interactions between structure and fluid
- 4 Coupled response
 - 8 structural vibration
 - 8 acoustic pressure

- 0 Most **mature** and **complete** interactive solution today
- 0 The user has the **right to choose** his method
 - 4 FEM or BEM
 - 4 Direct or indirect
 - 4 Coupled or uncoupled
 - 4 Transient or harmonic
- 0 Developed for **power users** as well as **occasional users**
- **0 Compatible** with
 - 4 your hardware environment
 - 8 UNIX, CRAY, CONVEX, IBM SP2 and Windows platforms
 - 4 your software investments
 - 8 FE packages, TEST softwares (LMS CADA-X)

SYSNOISE Offers You ...

0 Modeling facilities (economy of time)

- 4 Automatic mesh checking and coarsening
- 4 Optimized solvers for all methods
- 4 Non-linear matrix interpolation
- **0 Fully Interactive** analysis
 - 4 Graphical user interface
 - 4 Wizards
 - 4 Customizable environment
- 0 Minimum memory requirements
- **0** Maximum speed for calculation
- 0 No inherent limit
 - 4 Dynamic memory allocation
 - 4 Out-of-core procedures for all the solvers

Methods & Frequencies

Acoustics

higher frequency higher modal density

- 0 interior/exterior domain
- 0 volume mesh : slower
- 0 heterogeneous or homogeneous fluid
- 0 volume/surface absorber
- 0 solution : fast

Multi-domain methods

FEM + I-FEM

DBEM or FEM + DBEM

Available Modules of SYSNOISE

Calculation Sequence

e.g. FEM or BEM

Mesh checking & correction

Density and speed of sound

Structural and absorption properties Panel velocities or nodal forces

Spherical, Planar, User

Modes, Response, Matrices

Directivity, Contribution, Sensitivities

XY, Contours, Vectors, Animation

Vibration Input

0 From **FEA**

- 4 Uncoupled (acoustic) analysis : vibration patterns
- 4 Coupled (vibro-acoustic) analysis : str. normal modes
- 0 From **Test** (coupling effects included)
 - 4 Accelerometer or laser measurements
 - 4 Sorted per frequency or per measurement location

0 Manual input

- 4 **constant** velocity over the considered frequency range
- 4 through **frequency dependent** tables

Available Interfaces

- 0 **Import** meshes from external mesh generators
- 0 Mesh checking and coarsening
- 0 Automatic search and handling of junction lines
- 0 Automatic **search** and **handling** of **free edges**
- 0 Visual creation of item **groups**
- **0** Application of **boundary conditions**
 - 4 panel absorption
 - 4 panel vibration
 - 4 acoustic sources

Vibro-Acoustic Analysis

0 Normal modes

- 4 Acoustic mode shapes
- 4 **Structural** mode shapes (fluid loaded)

0 Vibro-Acoustic response

- 4 Acoustic (and structural) results at nodes and field points
 - 8 **uncoupled** and **coupled** analysis
 - 8 transient, harmonic and random (BEM) solution
 - 8 automatic **out-of-core** solvers for all modules

0 Matrices

- 4 Compute and export FE and BE matrices
- 4 Added mass matrix

- **0 Directivity**
 - 4 **polar** diagrams
 - 4 **3D** balloons
- 0 Panel Contribution
 - 4 **contribution** to sound pressure or sound power
 - 4 total or effective contribution
- **0** Sensitivities
 - 4 structural and acoustic design variables
 - 4 global and acoustic sensitivities

Dedicated Post-processing

- 0 **XY** plots
 - 4 time and frequency dependent response functions
 - 4 weighted or not (dBA, B, C...)
 - 4 narrow band, octave, 1/3 octave
- 0 Polar diagrams
 - 4 sound **directivity**
 - 4 complex contribution
- 0 **Bar** charts
 - 4 panel contributions
 - 4 modal **participation** factors
 - 4 sensitivities

- **0 Contour** plotting
 - 4 pressure
 - 4 vector field components
- 0 **Deformed** geometry
 - Vector diagram
 - 4 superimposed meshes
 - 4 velocities, intensitities, ...

Animation

- 4 transient response
- 4 **frequency** scanning
- 4 **phase** animation

Conclusion

- **0 SYSNOISE is the leading software** for computational vibro-acoustics
- **0 SYSNOISE** offers you a **broad choice of methods**
 - 4 to predict **sound** from vibrating structures
 - 4 to simulate the **interaction** between fluid and structure
 - 4 to optimize acoustically your **product design**
- 0 Main benefits of using **SYSNOISE**
 - 4 Integrated software
 - 4 Ease-of-use
 - 4 Calculation speed

- 1 Open architecture
- 1 Customization
- 1 All major computers

Body Noise Transfer Functions

- 0 Interior Noise Prediction using Acoustic BE Analysis
- 0 Analysis of **Structure-Borne** Noise
 - 4 structural excitation
 - 4 acoustic response
 - 8 frequency dependent pressure
 - 8 at driver ear

Definition of BNTF

0 What ?

- 4 frequency response function
- 4 of sound pressure at a field point
- 4 caused by a unit force
- 4 at a structural excitation point
 - 8 engine mount
 - 8 suspension point
- **0** Why ?
 - 4 if same car body and same acoustic compartment
 - 4 but different engines, suspension systems
 - 4 you can use the same BNTF !

First Step = Structural FE Analysis

0 Structural FE Mesh

- 4 8914 nodes, 11086 elements
- 4 body in white
- **0** Excitation
 - 4 Unit force (engine mount)
- **0** Analysis
 - 4 Normal modes (up to 120 Hz)
 - 4 Modal superposition
- **0 Results** = **Body displacements**
 - 4 from 5 to 70 Hz, step 1 Hz
 - 4 usually limited to 100 ... 150 Hz

Model Courtesy of Daewoo

Second Step = Acoustic BE Analysis

0 Incompatible Meshes

- 4 acoustic BE mesh with only 1168 nodes and 1200 elements
- 4 different wavelengths for fluid and structure (bending)
- 4 different geometries and different element densities
- **0** Automatic Multi-Frequency Transfer
 - 4 structural displacements => normal acoustic velocities

Acoustic Response Calculation

- 0 Acoustic Frequency Response Function (Field Point)
 - 4 driver ear
 - 4 pressure (dB)
 - 4 all frequencies
- 0 Acoustic Field (Field Point Mesh)
 - 4 whole cavity
 - 4 pressure (dB)
 - 4 one frequency

acoustic calculation time negligible compared tostructural analysis

Conclusion

- 0 Driver ear response computed with **SYSNOISE**
- 0 Further information may be obtained from a **contribution analysis**
- 0 A tool for each problem
 - 4 low frequency (Vibro-)Acoustics : SYSNOISE
 - 4 medium to high frequency Acoustics : MOSART
 - 4 high frequency (Vibro-)Acoustics : SEA
- 0 Interface to **Sound Quality Monitor** (LMS CADA-X)
- 0 Equivalent results between acoustic FE and BE
- **0** Very fast acoustic calculation

Engine Noise : Test-Analysis Correlation

0 Comparison between

- 4 acoustic test
- 4 BE radiation analysis
- 0 Use of experimental vibration data as input for **SYSNOISE**
- **0** Modal Expansion

Experimental Test Set-Up

- 0 Hammer excitation in **bearing 4**
- **0** Measurements
 - 4 Structural
 - **8** 13 points
 - 8 on front face
 - 4 Acoustic (SPL)
 - 8 distance = 0.1 m
 - 8 averaged on 6 points

Model Courtesy of Ford

Structural and Acoustic Meshes

0 Structural FE mesh

- 4 volume elements
- 4 lumped masses
- 4 beam elements
- 4 interior surfaces

0 Mesh Coarsening

- 4 suppress internal parts
- 4 detect and remove the ribs
- 4 increase the size of the elements (6 elements per acoustic wavelength is enough for the radiation analysis)
- 4 end up with the radiating surface only = **BE Mesh**

Modal Expansion

0 Assumptions

4 experimental data are reliable and sufficient

- 8 accurate damping
- 8 accurate boundary conditions
- 8 accurate load

4 mode shapes are correct

8 correlated with measurements

0 For each frequency

ombine structural mode shapes to match the actual dynamic response of the structure

0 Singular Value Decomposition

Acoustic Results and Conclusion

- **0** Diamonds in, diamonds out !
- 0 **Comparison** (distance = 0.10m)
 - 4 measured pressure
 - 4 computed pressure
- => Very Good Correlation
- **0** Modal Expansion
 - 4 validated
- **0** Acoustic Radiation
 - 4 accurate if accurate boundary conditions

Double Line Exhaust System

0 Many tools for modeling **duct noise** and **shell radiation**

- 4 finite elements
 - 8 surface absorption and perforated pipes
 - 8 inhomogeneous fluid (porous material, temperature gradients,...)
 - 8 flow effects
 - 8 time and frequency domain analysis

input

method

output

- 4 boundary elements
 - 8 surface absorption and perforated pipes
 - 8 uncoupled or coupled (shell noise) analysis

Acoustic Model

0 Acoustic FE Mesh

4 46966 nodes and 39254 elements

0 Acoustic Properties

- 4 Acoustic medium = **air**
- 4 Perforated pipes
- 4 Strong temperature gradient $(500 \ ^{\circ}\text{C} \rightarrow 50 \ ^{\circ}\text{C})$
- **0** Excitation
 - 4 2 inlet pipes
 - 4 engine pulsations = velocity BCs
 - 4 phase difference : 180 degrees

Acoustic Response Calculation

0 Pipe noise

4 for one single frequency or on a frequency range

Flow Effects

0 2-step approach

- 4 compute flow field
 - 8 in SYSNOISE : stationnary, inviscid, irrotational flow
 - 8 in CFD package + import to SYSNOISE
- 4 compute acoustic field (convected wave equation)
- **0** Flow field
 - 4 flow potential and flow velocity BCs
 - 4 frequency independent

0 Acoustic field

- 4 influenced by flow field
- 4 frequency domain

Transient Analysis

- **0** Acoustic FE or BE
- 0 Time dependent **acceleration** BCs
- **0 Impedance** BCs for :
 - 8 open outlet end
 - 8 surface absorption
- **0** Transient response
- **0** Time Response Functions
 - 4 you can listen to it
 - 4 you can apply FFT to switch to the frequency domain

Conclusion

0 Multitude of tools for duct acoustics

- 4 HVAC systems
- 4 air in-take systems
- 4 exhaust systems
- 0 Choice of method is **application dependent**
 - 4 flow effects ? temperature effects ?
 - 4 transient or harmonic ? uncoupled or coupled ?
 - 4 homogeneous fluid ? perforated pipes ? surface absorption ?
- **0** Further post-processing
 - 4 audio replay
 - 4 interface to **Sound Quality** Monitor (SQ-MON of LMS)

Gearbox Sound Radiation

- 0 Compliance with **Pass-by-Noise Regulation**
- **0** Automatic Model Handling
 - 4 automatic verification
 - 4 automatic correction
- **0** Non-Linear Matrix Frequency Interpolation
 - 4 faster solution
 - 4 same accuracy

Pass-By-Noise Test (Europe : ISO 362)

0 Running Vehicle

- 4 initial speed = 50 km/h
- 4 2 tests : second and third gear
- 4 accelerate at full throttle

0 Measurement Points

- 4 immobile, standardized position
- $4 \quad SPL < 77 \ dBA \ during \ the \ whole \ test$

0 Many Contributions

- 4 road/wheel noise
- 4 engine noise
- 4 aerodynamic noise
- 4 noise of components : exhaust, gearbox, ...

Model Courtesy of BMW Munchen

Acoustic Model

0 Acoustic BE Mesh

4 1.827 nodes, 1.899 elements

0 Automatic Mesh Handling

- 4 normals correction
- 4 junctions (523)
 - 8 detection of junctions
 - 8 junction constraints
- 4 free edges
- **0** Excitation
 - 4 vibration of the gearbox shell
 - 4 gear noise
- **0** Frequency : 500 to 1500 (Step 5 Hz) = 201 Steps

Acoustic Response (CRAY C90)

- **0** Frequency Interpolation Technique
 - 4 master frequencies : system assembly + solution
 - 4 slave frequencies : system interpolation + solution
- 0 CPU time **without** Interpolation (frequency step = 5 Hz)
 - 4 **assembly** : 105 * 201 = 21105 sec
 - 4 **solution** : 20*201 = 4020 sec
 - 4 total : 25125 sec
- 0 CPU Time with Interpolation (frequency step = 50 Hz, interpolation every 5 Hz)
 - 4 **assembly** : 105 * 21 = 2205 sec
 - 4 solution : 20 * 201 = 4020 sec
 - 4 total : 6225 sec -> 4 times faster !!!

Conclusion

0 Fully Automatic Mesh Handling

- 4 mesh verification
- 4 mesh correction

0 Matrix Frequency Interpolation

- 4 non linear
- 4 important time saving
- 4 quality of results kept
- 0 Pass-by-Noise Requirements are Satisfied

Valve Cover Radiation

- 0 Sound Radiated from **Truck Engine Valve Cover**
- **0** Automatic Mesh Treatment in SYSNOISE
 - 4 normals correction and rib removal
- **0** Symmetry planes and Reflective Halfspaces
- 0 Analysis
 - 4 radiation from structural normal mode
 - 4 comparison of radiation efficiencies

Structural Model

0 Structural FE Mesh

- 4 1771 nodes
- 4 1758 elements
- 4 symmetric
- 4 contains ribs

0 Structural Deflection

4 mode shape 6 - 843.3 Hz

0 Rib Handling

- 4 interior ribs
- 4 no direct contribution to acoustic field
- 4 mesh coarsener of SYSNOISE
 - 8 automatic rib detection and removal

Model Courtesy of Renault VI

Acoustic Model

- 0 Option BEM Indirect
- 0 Automatic Mesh Handling
 - 4 normals
 - 4 junctions
 - 4 free edges

0 Model Handling

- 4 symmetry plane
- 4 rigid halfspace plane

0 Automatic BCs Generation

- 4 incompatible meshes
- 4 projection on normal
- 4 conversion to velocities

Acoustic Radiated Field

0 **Results**

- 4 mesh
 - 8 potentials
 - 8 input and radiated power
 - 8 power densities
 - 8 radiation efficiency
- 4 field point mesh
 - 8 pressure
 - 8 velocity
 - 8 intensity
 - 8 radiated power

Conclusion

0 Starting from a Structural FE Model

- 4 structural FE mesh
- 4 structural modal basis

0 Automatic Handling of the Mesh

- 4 very robust algorithms
- 4 very fast update of the model
- **0** Easy Transfer of Structural Deflection
- **0** Acoustic Radiation Analysis
- 0 Vibro-Acoustic Results
 - 4 detailled results
 - 4 easy representation

Aircraft Fan Noise

- **0** Acoustic Radiation using Indirect BEM
- 0 Axisymmetric Model
 - 4 axisymmetric geometry
 - 4 non-axisymmetric excitation
 - 4 Fourier decomposition
- **0** Easy Post-processing

Acoustic BE Model

0 Acoustic BE Mesh (Axisymmetric)

- 4 only 60 nodes, 59 LINE2 elements
- 4 automatic verification of normals

0 Automatic Axisymmetric Mesh Expansion

- 4 3D mesh
- 4 refinement = 5

0 Boundary Conditions

4 order 5 => **Fourier decomposition**

4 possible BCs in SYSNOISE

- 8 velocity, pressure
- 8 impedance/admittance
- 8 continuous or **discontinuous**
- 8 combination

Acoustic Field Evaluation

- **0** Very Fast Calculation (like a 2D Model)
- **0** Acoustic Field
 - 4 pure radiation
 - 4 scattering on fuselage

Pressure field - 500Hz

Scattered field - 500Hz

Conclusion

- 0 **Unique Features** for Solving Axisymmetric Problems like Aircraft Fan Noise Problems
 - 4 axisymmetric geometry
 - 4 automatic mesh expansion
 - 4 boundary condition
 - 8 general 3D
 - 8 harmonic (order to be specified)
- **0 Very Short CPU Time**
- 0 Full 3D Post-processing Possible

Loudspeaker Radiation Analysis

0 Coupled BEM Indirect/FEM Structure

- 4 fluid inside and outside of the loudspeaker
- 4 rigid loudspeaker box
- 4 very thin flexible woofer
- 4 added mass effect
 - 8 of air on woofer
 - 8 responsible for sound characteristic of the woofer

Acoustic Model

0 Acoustic BE Mesh

- 4 498 nodes, 512 elements
- 4 normals
 - 8 must point consistently
 - 8 automatic handling
- 4 fluid = air
 - 8 density = 1.2 kg/m^3
 - 8 sound speed = 340 m/s
- 4 loudspeaker box
 - 8 rigid
- 4 woofer
 - 8 flexible (see structural model)
- 4 field point mesh

Structural FE Model

0 Woofer FE Mesh

4 shell elements

0 Boundary Conditions

- 4 clamped on the edges
- 4 excitation
 - 8 point force

0 Woofer FE Modal Basis

- 4 10 structural modes
- 4 up to 1347 Hz
- **0** Coupling Models
 - 4 fluid-structure link
 - 4 on the woofer only

Radiated Pressure Field - 500 Hz

Conclusion

0 Loudspeaker Model

- 4 rigid loudspeaker box
- 4 very flexible and thin woofer (membrane)
- 4 fluid on both sides of the box faces

0 Coupled BEM Indirect/FEM Structure

- 4 fluid-structure link
- 4 sound transmission (through the woofer)
- 4 exterior acoustic field
 - 8 pressure field
 - 8 directivity pattern

Oilpan Global Sensitivity Analysis

0 Traditional acoustic BE analysis **only gives results for**

- 4 radiated sound pressure
- 4 radiated sound power
- 0 but **no information** on
 - 4 where to make design modifications ?
 - 4 which changes to make ?
- **0** Solution : **Global Sensitivity Analysis**

Structural FE Model

- 0 Define Thickness **Design Variables**
- **0** Compute **Structural Sensitivities**
- **0** Transfer to SYSNOISE
 - 4 for every frequency
 - 8 structural sensitivity vectors (1 per design variable)

Acoustic BE Model

0 Acoustic BE Mesh

- 4 radiating surface
- 4 1620 nodes, 1550 elements

0 **Problem**

- 4 radiated power too high
- 4 near 1.000 Hz

0 Solution Steps

- 4 compute the **sensitivity** of radiated power with respect to panel thickness design variables
- 4 see which part is the most **sensitive**
- 4 change the thickness (stiffness) of this part
- 4 **verify** the improved model

Global Sensitivity Results

0 Show clearly what to do

4 where the sensitivity is high, the effect on radiated power is more important

0 Solution

- 4 difficult to increase thickness
- 4 => add stiffeners

- **0 Radiated Power** FRF
 - 4 shows improvement
 - 4 about **4.6 dB**

Frequency

Conclusion

- **0 No more trial-and-error** iterations
- **0** SYSNOISE clearly indicates
 - 4 where changes have to be made on the structure
 - 4 what is the **impact** of these changes on the acoustic field
- 0 Significant cost savings
- **0 Reduced time-to-market**
- **0** Further extensions
 - 4 sensitivities on a frequency range
 - 4 link to **optimization** techniques : **LMS Optimus**