System for Vibro-Acoustic Analysis

LMS Numerical Technologies
A Few Words About Acoustics

<table>
<thead>
<tr>
<th>Source</th>
<th>Propagation</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>vibrating body</td>
<td>sound path & absorption</td>
<td>microphone</td>
</tr>
<tr>
<td>speaker</td>
<td>• airborne</td>
<td>ear</td>
</tr>
<tr>
<td></td>
<td>• structure-borne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mixed</td>
<td></td>
</tr>
</tbody>
</table>
Dealing with Vibration & Sound

Rigid wall

Flexible wall
Fluid-Structure Coupling

Vibration generates Sound

Vibro - \(F_s \)

Structure

Acoustic Excitation

\(F_a \)

Fluid

Sound induces vibration

up

Sound induces vibration
Harmonic vs Transient Analysis

0 Frequency domain
4 Helmholtz equation
4 Harmonic or narrow-band excitations
4 Solution with \textit{complex} variables

\[\nabla^2 p + k^2 p = 0 \]

0 Time domain
4 Wave equation
4 Transient (e.g. shock) and broad-band excitations
4 Solution with \textit{real} variables

\[\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \]
Why Numerical Simulation?

- Numerical Methods
- Experimental Techniques

Efficiency

KNOW UNDERSTAND PREDICT
Usual Numerical Tools

0 (Semi-) **Analytical Methods**
 4 Closed form solutions
 4 Only for simple geometries

0 **Finite Element Method (FEM)**
 4 Volume discretization into Finite Elements

0 **Boundary Element Method (BEM)**
 4 Discretization of bounding surface into Boundary Elements

0 **Statistical Energy Methods (SEA)**
 4 Energy exchanges between system components

0 **Ray Methods**
 4 Geometrical Acoustics
 4 RAYNOISE, MOSART
Why Acoustic Analysis?

0 Acoustics becomes increasingly important
 4 Product quality
 4 Competitive advantage
 4 Part of design specifications
 4 Government regulations quality of Life

0 Analysis up-front in the design phase
 4 Concurrent engineering
 4 Early interaction with design engineers
 4 Evaluate design alternatives
 4 Reduce prototyping
 4 Significant cost and time savings
Typical Acoustic Analysis

<table>
<thead>
<tr>
<th>0</th>
<th>Sound radiation from vibrating structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Acoustic reflection and diffraction of sound waves</td>
</tr>
<tr>
<td>0</td>
<td>Sound transmission between fluid regions separated by a structural partition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>Acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Fluid behavior only</td>
</tr>
<tr>
<td>4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>8</td>
<td>panel velocities</td>
</tr>
<tr>
<td>8</td>
<td>sound sources</td>
</tr>
<tr>
<td>8</td>
<td>panel absorption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>Vibro-acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Interactions between structure and fluid</td>
</tr>
<tr>
<td>4</td>
<td>Coupled response</td>
</tr>
<tr>
<td>8</td>
<td>structural vibration</td>
</tr>
<tr>
<td>8</td>
<td>acoustic pressure</td>
</tr>
</tbody>
</table>
Why SYSNOISE?

0 Most **mature** and **complete** interactive solution today

0 The user has the **right to choose** his method
 4 FEM or BEM
 4 Direct or indirect
 4 Coupled or uncoupled
 4 Transient or harmonic

0 Developed for **power users** as well as **occasional users**

0 **Compatible** with
 4 your **hardware environment**
 8 UNIX, CRAY, CONVEX, IBM SP2 and Windows platforms
 4 your **software investments**
 8 FE packages, TEST softwares (LMS CADA-X)
SYSNOISE Offers You ...

0 Modeling facilities (economy of time)
 4 Automatic mesh checking and coarsening
 4 Optimized solvers for all methods
 4 Non-linear matrix interpolation

0 Fully Interactive analysis
 4 Graphical user interface
 4 Wizards
 4 Customizable environment

0 Minimum memory requirements

0 Maximum speed for calculation

0 No inherent limit
 4 Dynamic memory allocation
 4 Out-of-core procedures for all the solvers
Methods & Frequencies

Acoustics

SYSNOISE

MOSART, RAYNOISE

Vibro-Acoustics

SYSNOISE

SEA

higher frequency
higher modal density
FEM & I-FEM

- interior/exterior domain
- volume mesh: slower
- heterogeneous or homogeneous fluid
- volume/surface absorber
- solution: fast
BEM

DBEM

Exterior

Interior

IBEM

0 homogeneous fluid
0 surface absorbers
0 meshing: faster
Multi-domain methods

- FEM + I-FEM
- DBEM or FEM + DBEM
Available Modules of SYSNOISE

- Transient
- Acoustic FEM
- I-FEM
- DBEM
- IBEM
- Struct. FEM
Calculation Sequence

Calculation Option
- Input Mesh & Field
- Fluid Properties
- Panel Properties
- Sound Sources
- Acoustic Analysis

Post-analysis
- Directivity, Contribution, Sensitivities

Post-processing
- XY, Contours, Vectors, Animation

Mesh
- e.g. FEM or BEM
- Mesh checking & correction
- Density and speed of sound
- Structural and absorption properties
- Panel velocities or nodal forces
- Spherical, Planar, User
- Modes, Response, Matrices

Vibration
- Directivity, Contribution, Sensitivities
- XY, Contours, Vectors, Animation
Vibration Input

0 From **FEA**
 4 Uncoupled (acoustic) analysis: *vibration patterns*
 4 Coupled (vibro-acoustic) analysis: str. **normal modes**

0 From **Test** (coupling effects included)
 4 Accelerometer or laser **measurements**
 4 Sorted per frequency or per measurement location

0 **Manual** input
 4 constant velocity over the considered frequency range
 4 through **frequency dependent** tables
Available Interfaces

Mesh Generator
Nodes, Elements, Groups
Structural FEA
Vibrations, Sensitivities, Mode Shapes
Test Data

SYSNOISE
Pre-processing
Vibro-Acoustic Analysis
Post-analysis
Dedicated Post-processing

Embedded 2-way interfaces

- MSC/NASTRAN - MSC/PATRAN
- LMS/CADA-X
- ANSYS
- I-DEAS Master Series
- FemGen/FemView
- HYPERMESH
- ABAQUS
- MARC
- ProMechanica
- SYSTUS
Pre-processing

0 Import meshes from external mesh generators
0 Mesh checking and coarsening
0 Automatic search and handling of junction lines
0 Automatic search and handling of free edges
0 Visual creation of item groups
0 Application of boundary conditions
 4 panel absorption
 4 panel vibration
 4 acoustic sources
Vibro-Acoustic Analysis

0 Normal modes
 4 Acoustic mode shapes
 4 Structural mode shapes (fluid loaded)

0 Vibro-Acoustic response
 4 Acoustic (and structural) results at nodes and field points
 8 uncoupled and coupled analysis
 8 transient, harmonic and random (BEM) solution
 8 automatic out-of-core solvers for all modules

0 Matrices
 4 Compute and export FE and BE matrices
 4 Added mass matrix
Post-analysis

0 Directivity
 4 polar diagrams
 4 3D balloons

0 Panel Contribution
 4 contribution to sound pressure or sound power
 4 total or effective contribution

0 Sensitivities
 4 structural and acoustic design variables
 4 global and acoustic sensitivities
Dedicated Post-processing

<table>
<thead>
<tr>
<th></th>
<th>XY plots</th>
<th>Contour plotting</th>
<th>Deformed geometry</th>
<th>Vector diagram</th>
<th>Animation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time and frequency dependent response functions</td>
<td>pressure</td>
<td>superimposed meshes</td>
<td>transient response</td>
<td>transient</td>
</tr>
<tr>
<td></td>
<td>weighted or not (dBA, B, C...)</td>
<td>vector field components</td>
<td>velocities, intensities, ...</td>
<td>frequency scanning</td>
<td>phase</td>
</tr>
<tr>
<td></td>
<td>narrow band, octave, 1/3 octave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polar diagrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sound directivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>complex contribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar charts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>panel contributions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modal participation factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sensitivities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

SYSNOISE is the leading software for computational vibro-acoustics

SYSNOISE offers you a **broad choice of methods**

- to predict **sound** from vibrating structures
- to simulate the **interaction** between fluid and structure
- to optimize acoustically your **product design**

Main benefits of using **SYSNOISE**

- Integrated software
- Ease-of-use
- Calculation speed

- Open architecture
- Customization
- All major computers
LMS/SYSNOISE 應用實例

- 內部聲場
- 外部聲場
- 流場結構互動
- 設計改善

- 汽車
- 航太
- 家用產品
車內噪音分析
Body Noise Transfer Functions

0 Interior Noise Prediction using Acoustic BE Analysis
0 Analysis of Structure-Borne Noise
 4 structural excitation
 4 acoustic response
 8 frequency dependent pressure
 8 at driver ear

acoustic BE mesh + structural FE mesh + structural response vectors

SYSNOISE Direct BEM or Indirect BEM

acoustic FRFs at driver ear
Definition of BNTF

What?
- frequency response function
- of sound pressure at a field point
- caused by a unit force
- at a structural excitation point
 - engine mount
 - suspension point

Why?
- if same car body and same acoustic compartment
- but different engines, suspension systems
- you can use the same BNTF!
First Step = Structural FE Analysis

0 Structural FE Mesh
 4 8914 nodes, 11086 elements
 4 body in white

0 Excitation
 4 Unit force (engine mount)

0 Analysis
 4 Normal modes (up to 120 Hz)
 4 Modal superposition

0 Results = Body displacements
 4 from 5 to 70 Hz, step 1 Hz
 4 usually limited to 100 ... 150 Hz

Model Courtesy of Daewoo
Second Step = Acoustic BE Analysis

0 Incompatible Meshes
 1 acoustic BE mesh with only 1168 nodes and 1200 elements
 2 different wavelengths for fluid and structure (bending)
 3 different geometries and different element densities

0 Automatic Multi-Frequency Transfer
 1 structural displacements \Rightarrow normal acoustic velocities
Acoustic Response Calculation

0. Acoustic Frequency Response Function (Field Point)
 - driver ear
 - pressure (dB)
 - all frequencies

0. Acoustic Field (Field Point Mesh)
 - whole cavity
 - pressure (dB)
 - one frequency

Acoustic calculation time negligible compared to structural analysis.
Conclusion

0 Driver ear response computed with **SYSNOISE**
0 Further information may be obtained from a **contribution analysis**
0 A tool for each problem
 4 low frequency (Vibro-)Acoustics: **SYSNOISE**
 4 medium to high frequency Acoustics: **MOSART**
 4 high frequency (Vibro-)Acoustics: **SEA**
0 Interface to **Sound Quality Monitor** (LMS CADA-X)
0 Equivalent results between acoustic FE and BE
0 **Very fast acoustic calculation**
引擎本體輻射噪音

Structural FE Mesh
7400 grids & 6400 elements

Acoustic BE Mesh
2800 grids & 2800 elements
0 **Comparison** between
 4 acoustic test
 4 BE radiation analysis

0 Use of experimental vibration data as input for **SYSNOISE**

0 **Modal Expansion**

```
acoustic BE mesh +
experimental FRFs +
structural
normal modes

SYSNOISE
Indirect BEM

acoustic FRFs
at microphones
```

input method output
Experimental Test Set-Up

0 Hammer excitation in bearing 4

0 Measurements

4 Structural
 8 13 points
 8 on front face

4 Acoustic (SPL)
 8 distance = 0.1 m
 8 averaged on 6 points
Structural and Acoustic Meshes

Structural FE mesh
- 4 volume elements
- 4 lumped masses
- 4 beam elements
- 4 interior surfaces

Mesh Coarsening
- 4 suppress internal parts
- 4 detect and remove the ribs
- 4 increase the size of the elements (6 elements per acoustic wavelength is enough for the radiation analysis)
- 4 end up with the radiating surface only = **BE Mesh**
Modal Expansion

0 Assumptions
 4 experimental data are reliable and sufficient
 8 accurate damping
 8 accurate boundary conditions
 8 accurate load
 4 mode shapes are correct
 8 correlated with measurements

0 For each frequency

\[
\text{MEASUREMENT} = \sum \left[\text{MODE SHAPE} \times \text{PARTIC. FACT.} \right]
\]

0 Singular Value Decomposition
Acoustic Results and Conclusion

0 Diamonds in, diamonds out!
0 Comparison
(distance = 0.10m)
 4 measured pressure
 4 computed pressure
=> Very Good Correlation
0 Modal Expansion
 4 validated
0 Acoustic Radiation
 4 accurate if accurate boundary conditions
消音器傳輸損失計算
Double Line Exhaust System

Many tools for modeling **duct noise** and **shell radiation**

- **finite elements**
 - surface absorption and perforated pipes
 - inhomogeneous fluid (porous material, temperature gradients,...)
 - flow effects
 - time and frequency domain analysis

- **boundary elements**
 - surface absorption and perforated pipes
 - uncoupled or coupled (shell noise) analysis
Acoustic Model

0 Acoustic FE Mesh
 4 46966 nodes and 39254 elements

0 Acoustic Properties
 4 Acoustic medium = air
 4 Perforated pipes
 4 Strong temperature gradient
 (500 °C -> 50 °C)

0 Excitation
 4 2 inlet pipes
 4 engine pulsations = velocity BCs
 4 phase difference : 180 degrees

Model Courtesy of Bosal
Acoustic Response Calculation

0 Pipe noise
 4 for one single frequency or on a frequency range
 4 transmission loss (by combination of FRFs)
Flow Effects

0 2-step approach
 4 compute flow field
 8 in SYSNOISE: stationnary, inviscid, irrotational flow
 8 in CFD package + import to SYSNOISE
 4 compute acoustic field (convected wave equation)

0 Flow field
 4 flow potential and flow velocity BCs
 4 frequency independent

0 Acoustic field
 4 influenced by flow field
 4 frequency domain
Transient Analysis

- Acoustic FE or BE
- Time dependent acceleration BCs
- Impedance BCs for:
 - open outlet end
 - surface absorption

- Transient response

- Time Response Functions
 - you can listen to it
 - you can apply FFT to switch to the frequency domain
Conclusion

0 Multitude of tools for duct acoustics
 4 HVAC systems
 4 air in-take systems
 4 exhaust systems

0 Choice of method is application dependent
 4 flow effects ? temperature effects ?
 4 transient or harmonic ? uncoupled or coupled ?
 4 homogeneous fluid ? perforated pipes ? surface absorption ?

0 Further post-processing
 4 audio replay
 4 interface to Sound Quality Monitor (SQ-MON of LMS)
齒輪箱噪音
Gearbox Sound Radiation

0 Compliance with Pass-by-Noise Regulation

0 Automatic Model Handling
 4 automatic verification
 4 automatic correction

0 Non-Linear Matrix Frequency Interpolation
 4 faster solution
 4 same accuracy

Input: acoustic BE mesh + structural FEA results
Method: SYSNOISE Indirect BEM
Output: directivity diagrams + SPL results at field points
Pass-By-Noise Test (Europe : ISO 362)

0 Running Vehicle
 4 initial speed = 50km/h
 4 2 tests : second and third gear
 4 accelerate at full throttle

0 Measurement Points
 4 immobile, standardized position
 4 SPL < 77 dBA during the whole test

0 Many Contributions
 4 road/wheel noise
 4 engine noise
 4 aerodynamic noise
 4 noise of components : exhaust, gearbox, ...

Model Courtesy of BMW Munchen
Acoustic Model

0 **Acoustic BE Mesh**
 4 1,827 nodes, 1,899 elements

0 **Automatic Mesh Handling**
 4 normals correction
 4 junctions (523)
 8 detection of junctions
 8 junction constraints
 4 free edges

0 **Excitation**
 4 vibration of the gearbox shell
 4 gear noise

0 **Frequency**: 500 to 1500 (Step 5 Hz) = 201 Steps
Acoustic Response (CRAY C90)

0 Frequency Interpolation Technique
 4 master frequencies: system assembly + solution
 4 slave frequencies: system interpolation + solution

0 CPU time without Interpolation (frequency step = 5 Hz)
 4 assembly: 105 * 201 = 21105 sec
 4 solution: 20 * 201 = 4020 sec
 4 total: 25125 sec

0 CPU Time with Interpolation (frequency step = 50 Hz, interpolation every 5 Hz)
 4 assembly: 105 * 21 = 2205 sec
 4 solution: 20 * 201 = 4020 sec
 4 total: 6225 sec -> 4 times faster !!!
Conclusion

0 Fully Automatic Mesh Handling
 4 mesh verification
 4 mesh correction

0 Matrix Frequency Interpolation
 4 non linear
 4 important time saving
 4 quality of results kept

0 Pass-by-Noise Requirements are Satisfied
引擎閥蓋噪音
Valve Cover Radiation

0 Sound Radiated from Truck Engine Valve Cover

0 Automatic Mesh Treatment in SYSNOISE
 4 normals correction and rib removal

0 Symmetry planes and Reflective Halfspaces

0 Analysis
 4 radiation from structural normal mode
 4 comparison of radiation efficiencies

<table>
<thead>
<tr>
<th>acoustic BE mesh + structural normal modes</th>
<th>SYSNOISE Indirect BEM</th>
<th>acoustic radiated field + radiation efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>method</td>
<td>output</td>
</tr>
</tbody>
</table>
Structural Model

0 **Structural FE Mesh**
 4 1771 nodes
 4 1758 elements
 4 symmetric
 4 contains ribs

0 **Structural Deflection**
 4 mode shape 6 - 843.3 Hz

0 **Rib Handling**
 4 interior ribs
 4 no direct contribution to acoustic field
 4 mesh coarsener of SYSNOISE
 8 automatic rib detection and removal
Acoustic Model

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option BEM Indirect</td>
<td>0</td>
</tr>
<tr>
<td>Automatic Mesh Handling</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 normals</td>
</tr>
<tr>
<td></td>
<td>4 junctions</td>
</tr>
<tr>
<td></td>
<td>4 free edges</td>
</tr>
<tr>
<td>Model Handling</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 symmetry plane</td>
</tr>
<tr>
<td></td>
<td>4 rigid halfspace plane</td>
</tr>
<tr>
<td>Automatic BCs Generation</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 incompatible meshes</td>
</tr>
<tr>
<td></td>
<td>4 projection on normal</td>
</tr>
<tr>
<td></td>
<td>4 conversion to velocities</td>
</tr>
</tbody>
</table>
Acoustic Radiated Field

0 Results

4 mesh
 8 potentials
 8 input and radiated power
 8 power densities
 8 radiation efficiency

4 field point mesh
 8 pressure
 8 velocity
 8 intensity
 8 radiated power
Conclusion

0 Starting from a Structural FE Model
 4 structural FE mesh
 4 structural modal basis

0 Automatic Handling of the Mesh
 4 very robust algorithms
 4 very fast update of the model

0 Easy Transfer of Structural Deflection

0 Acoustic Radiation Analysis

0 Vibro-Acoustic Results
 4 detailed results
 4 easy representation
飛機渦輪葉片噪音
Aircraft Fan Noise

0 Acoustic Radiation using Indirect BEM

0 Axisymmetric Model
 4 axisymmetric geometry
 4 non-axisymmetric excitation
 4 Fourier decomposition

0 Easy Post-processing

Input
- acoustic BE mesh (generator line) + field point mesh

Method
- SYSNOISE Indirect BEM (Axisymmetric)

Output
- Acoustic Field SPL, ...
Acoustic BE Model

0 Acoustic BE Mesh (Axisymmetric)
 4 only 60 nodes, 59 LINE2 elements
 4 automatic verification of normals

0 Automatic Axisymmetric Mesh Expansion
 4 3D mesh
 4 refinement = 5

0 Boundary Conditions
 4 order 5 => Fourier decomposition
 4 possible BCs in SYSNOISE
 8 velocity, pressure
 8 impedance/admittance
 8 continuous or discontinuous
 8 combination
Acoustic Field Evaluation

0 Very Fast Calculation (like a 2D Model)

0 Acoustic Field
 4 pure radiation
 4 scattering on fuselage

Pressure field - 500Hz

Scattered field - 500Hz
Conclusion

0 **Unique Features** for Solving Axisymmetric Problems like Aircraft Fan Noise Problems
 - 4 axisymmetric geometry
 - 4 automatic mesh expansion
 - 4 boundary condition
 - 8 general 3D
 - 8 harmonic (order to be specified)

0 **Very Short CPU Time**

0 Full 3D Post-processing Possible
喇叭流場結構互動行為分析

![喇叭流場結構圖](image)
Loudspeaker Radiation Analysis

0 Coupled BEM Indirect/FEM Structure
4 fluid inside and outside of the loudspeaker
4 rigid loudspeaker box
4 very thin flexible woofer
4 added mass effect
 8 of air on woofer
 8 responsible for sound characteristic of the woofer

Input : acoustic BE mesh + structural FE mesh and mode shapes of the woofer
Method : SYSNOISE Indirect BEM Coupled
Output : acoustic transmitted and radiated field
Acoustic Model

0 Acoustic BE Mesh
 4 498 nodes, 512 elements
 4 normals
 8 must point consistently
 8 automatic handling
 4 fluid = air
 8 density = 1.2 kg/m³
 8 sound speed = 340 m/s
 4 loudspeaker box
 8 rigid
 4 woofer
 8 flexible (see structural model)
 4 field point mesh
Structural FE Model

0 Woofer FE Mesh
 4 shell elements

0 Boundary Conditions
 4 clamped on the edges
 4 excitation
 8 point force

0 Woofer FE Modal Basis
 4 10 structural modes
 4 up to 1347 Hz

0 Coupling Models
 4 fluid-structure link
 4 on the woofer only
Radiated Pressure Field - 500 Hz
Conclusion

0 Loudspeaker Model
 4 rigid loudspeaker box
 4 very flexible and thin woofer (membrane)
 4 fluid on both sides of the box faces

0 Coupled BEM Indirect/FEM Structure
 4 fluid-structure link
 4 sound transmission (through the woofer)
 4 exterior acoustic field
 8 pressure field
 8 directivity pattern
油底殼設計靈敏度分析
Oilpan Global Sensitivity Analysis

0 Traditional acoustic BE analysis only gives results for
 4 radiated sound pressure
 4 radiated sound power

0 but no information on
 4 where to make design modifications?
 4 which changes to make?

0 Solution: Global Sensitivity Analysis

Input: acoustic BE mesh + structural sensitivities + structural response vectors

Method: Global Sensitivity Analysis with BEM Direct or Indirect

Output: global sensitivities
Structural FE Model

0 Define Thickness Design Variables
0 Compute Structural Sensitivities
0 Transfer to SYSNOISE

4 for every frequency
8 structural sensitivity vectors (1 per design variable)
8 response vector
Acoustic BE Model

0 Acoustic BE Mesh
 4 radiating surface
 4 1620 nodes, 1550 elements

0 Problem
 4 radiated power too high
 4 near 1.000 Hz

0 Solution Steps
 4 compute the **sensitivity** of radiated power with respect to panel thickness design variables
 4 see which part is the most **sensitive**
 4 **change** the thickness (stiffness) of this part
 4 **verify** the improved model

Model Courtesy of Honda
Global Sensitivity Results

0 **Show clearly what to do**
 4 where the sensitivity is high, the effect on radiated power is more important

0 **Solution**
 4 difficult to increase thickness
 4 => add stiffeners

0 **Radiated Power FRF**
 4 shows improvement
 4 about **4.6 dB**
Conclusion

0 No more trial-and-error iterations
0 SYSNOISE clearly indicates
 4 where changes have to be made on the structure
 4 what is the impact of these changes on the acoustic field
0 Significant cost savings
0 Reduced time-to-market
0 Further extensions
 4 sensitivities on a frequency range
 4 link to optimization techniques: LMS Optimus