Department of Harbor and River Engineering, National Taiwan Ocean University due 14/11 morning, Fall 1994, J. T. Chen

HW No.4

Solve the particular solution (steady state solution) of the SDOF vibration system $\ddot{x} + \omega^2 x = \cos(\bar{\omega}t)$ when $\omega = \bar{\omega}$

(1). Can the solution be derived by limiting process of $\bar{\omega} \to \omega$? (Hint: by superimposing the complementary solution before taking limit)

HW No.5

Solve the following Laplace equation in polar coordinate system. Governing equation:

$$\nabla^2 u(r,\theta) = 0, 0.5 < r < 1$$

Boundary condition:

$$u(1,\theta) = 0, \ u(0.5,\theta) = \cos^2(\theta)$$

HW No.6

If u, v are harmonic functions in region R, then prove $\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is analytic in R.

HW No.7

In class, we derive the Cauchy-Riemann equations by two paths case.1 : $\Delta x \neq 0, \Delta y = 0$ case.2 : $\Delta x = 0, \Delta y \neq 0$

Now consider the two paths in n and \bar{n} directions case.3 : $\Delta x = \epsilon \cos(\theta), \Delta y = \epsilon \sin(\theta)$ in n direction case.4 : $\Delta x = \epsilon \sin(\theta), \Delta y = -\epsilon \cos(\theta)$ in \bar{n} direction

Derive the new Cauchy-Riemann equations in the two directions. Can the new equations be derived from the classical Cauchy-Riemann equations. Reduce to classical Cauchy-Riemann equations by putting $\theta = 0$. (Hint: using the normal derivative)

【存檔:E:/ctex/course/math3/94hw3.te】【建檔:Oct./25/'94】