\qquad姓名： \qquad學號： \qquad

國立臺灣海洋大學河海工程學系1998 工程數學（三）期末考

1．Solve the particular solution（steady state solution）of the SDOF vibration system $\ddot{x}(t)+\omega^{2} x(t)=e^{i \bar{\omega} t}$
（a）．For the case of $\omega \neq \bar{\omega}$ ，derive the particular solution $x(t)$ ．（ 10% ）
（b）．For the case of $\omega=\bar{\omega}$ ，derive the particular solution by the limiting process of $\bar{\omega} \rightarrow \omega$ ？（10 \％）（Hint：by superimposing the particular solution with a complementary solution before taking limit）

2．According to the above figure，determine the following integrals．（30 \％）

$$
\begin{aligned}
& A_{11}=C . P . V \cdot \int_{C_{1}} \frac{1}{z-0.5} d z \\
& A_{12}=\int_{C_{2}} \frac{1}{z-0.5} d z \\
& B_{11}=H . P . V . \int_{C_{1}} \frac{1}{(z-0.5)^{2}} d z \\
& B_{12}=\int_{C_{2}} \frac{1}{(z-0.5)^{2}} d z \\
& A_{12}+A_{13}+A_{14}=\int_{C_{2}+C_{3}+C_{4}} \frac{1}{(z-0.5)} d z \\
& B_{12}+B_{13}+B_{14}=\int_{C_{2}+C_{3}+C_{4}} \frac{1}{(z-0.5)^{2}} d z
\end{aligned}
$$

where C．P．V．is Cauchy principal value，H．P．V．is Hadamard principal value，C_{1} is the line element from $(0,0)$ to $(1,0), C_{2}$ is the line element from $(1,0)$ to $(1,1), C_{3}$ is the line element from $(1,1)$ to $(0,1)$ ，and C_{4} is the line element from $(0,1)$ to $(0,0)$ ．

3．In the class，we have derived the Cauchy－Riemann equations as follows

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

$$
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Prove that（20 \％）

$$
\begin{aligned}
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial t} \\
& \frac{\partial u}{\partial t}=-\frac{\partial v}{\partial n}
\end{aligned}
$$

where n and t denote the normal and the tangent vectors as follows

$$
\begin{aligned}
& n=\left(n_{1}, n_{2}\right) \\
& t=\left(-n_{2}, n_{1}\right)
\end{aligned}
$$

（Hint：using the definition of directional derivative）
4．If u and v satisfy the Cauchy－Riemann relations in the region R ，then prove（ $\frac{\partial u}{\partial y}-$ $\left.\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ is analytic in R ．(10%)

5．Calculate the following integral（ 10% ）

$$
\int_{0}^{\pi} \frac{1}{1-2 a \cos (\theta)+a^{2}} d \theta, a>1
$$

6．Given a conformal mapping from (x, y) to (u, v) as

$$
w(z)=\frac{z+\frac{1}{4}}{z+4}=u(x, y)+i v(x, y)
$$

What is the mapping shape and equation in (x, y) plane of a circle in (u, v) plane of equation $u^{2}+v^{2}=\frac{1}{4}$ ？（10 \％）What is the mapping shape and equation in uv plane of a circle in (x, y) plane of equation $x^{2}+y^{2}=1 ?(10 \%)$

7．Given a conformal mapping from (x, y) to (u, v) as

$$
w(z)=z+\frac{1}{z}=u(x, y)+i v(x, y)
$$

What is the mapping shape and equation in (u, v) plane of a circle in (x, y) plane of equation $x^{2}+y^{2}=1 ?(10 \%)$ How about $x^{2}+y^{2}=4 ?(10 \%)$

8．Determine the following integral（ 20% ）

$$
\int_{-\infty}^{\infty} \frac{-1}{z^{2}} e^{i z x} d z
$$

\qquad姓名： \qquad學號： \qquad考試範圍—Complex Variables

海大河工系—1998 by Chen for complex variable
【存檔：$e: /$ ctex／course／math3／m3fin97．te】【建檔：Dec．／16／＇97】

