國立臺灣海洋大學河海工程學系1997 工程數學 (三) 第十一次作業

1. Determine the following integral

$$\int_C \frac{1}{z^2} dz$$

where C is the line element from (r_1, θ_1) to (r_2, θ_2) in terms of polar coordinate.

(a). Proof by complex method for

$$\int_{C} \frac{1}{z^{2}} dz = \frac{1}{r_{1}} cos(\theta_{1}) - \frac{1}{r_{2}} cos(\theta_{2}) + i \{ \frac{1}{r_{2}} sin(\theta_{2}) - \frac{1}{r_{1}} sin(\theta_{1}) \}$$

(b). Proof by real method using the line element (x_1, y_1) to (x_2, y_2)

$$z = x + yi$$

$$dz = dx + dyi$$

$$x_1 = r_1 cos(\theta_1)$$

$$y_1 = r_1 sin(\theta_1)$$

$$x_2 = r_2 cos(\theta_2)$$

$$y_2 = r_2 sin(\theta_2)$$

- (c). Determine the solution for the special case for the line element $(r_1,0)$ to $(r_2,0)$ in terms of polar coordinate.
- (d). Determine the solution for the special case for the line element (r_1, π) to (r_2, π) in terms of polar coordinate.
- (e). Determine the solution for the special case for the line element (r_1, π) to $(r_2, 0)$ in terms of polar coordinate.
- (f). Is the answer frame of indifference?

————海大河工系—1997 by J. T. Chen for complex variable —————

【存檔:e:/ctex/course/math3/m3hw11.te】【建檔:Dec./25/'97】