\qquad姓名： \qquad學號： \qquad

海洋大學河海工程學系2002 彈性力學期中考（OPEN BOOK）

1．Given a geometry description of the deformation

$$
\begin{align*}
& x_{1}=X_{1}-\tau X_{2} X_{3} \tag{1}\\
& x_{2}=X_{2}+\tau X_{1} X_{3} \tag{2}\\
& x_{3}=X_{3} \tag{3}
\end{align*}
$$

where τ is a constant．Please answer the following questions．
（a）．Is this plane deformation only？（5 \％）
（b）．Find the deformation gradient $F .(5 \%)$
（c）．Find the right Cauchy－Green strain tensor C ．（5 \％）
（d）．Find the Lagrangian strain tensor L ．（5 \％）
（e）．Is the deformation isochoric，i．e．，no volume change．（5 \％）
2．Conventionally，the deformation gradient F was decomposed by

$$
F=R U \text { or } F=V R
$$

（4）
where $\mathbf{d x}=F \mathbf{d} \mathbf{X}$ ．In our course，we present a new concept of singular value decomposition（SVD），

$$
\begin{equation*}
F=\Phi \Sigma \Psi^{T} \tag{5}
\end{equation*}
$$

Please determine the relation of R and Φ and $\Psi .(5 \%)$ Write down the procedures to derive Φ, Ψ and Σ ．（ 5% ）Also，if we introduce two new vectors，

$$
\begin{equation*}
\mathrm{d} \mathbf{y}=\Phi^{T} \mathrm{dx} \text { and } \mathrm{d} \mathbf{Y}=\Psi^{T} \mathrm{~d} \mathbf{X} \tag{6}
\end{equation*}
$$

please determine the formula between dy and dY．（10 \％）Please explain the physical，geometrical and numerical meanings for this transformation．（10 \％）

3．Can the following functions be the Airy stress function？In another words，are the following functions biharmonic ？（20\％）（1）．$f(x, y),(2) . x f(x, y),(3) . y f(x, y),(4) .\left(x^{2}+y^{2}\right) f(x, y),(5)$ ． $r^{2},(6) \cdot \ln (r),(7) \cdot \sin (\theta) / r,(8) \cdot r^{2} \cos (\theta)$ ，where $f(x, y)$ is a harmonic function，(x, y) and (r, θ) are the Cartesian and polar coordinates，respectively．

4．Write down the equilibrium equation and compatibility condition for 2－D elasticity．（10 \％）
5．Given a stress matrix at a point

$$
\sigma_{i j}=\left[\begin{array}{ccc}
\sigma_{11} & 2 & 1 \\
2 & 0 & 2 \\
1 & 2 & 0
\end{array}\right]
$$

Choose $\sigma_{11}(5 \%)$ so that there will be a traction－free plane and determine the normal vector of the plane．（10 \％）

