兩階線性微分方程系統性解法

1．Step 1：given one complementary solution，y_{1} ．
2．Step 2：solve another complementary solution $y_{2}=y_{1} u_{1}$ ．
3．Step 3：solve another particular solution $y_{p}=y_{1} v_{1}+y_{2} v_{2}$ ．
4．Example ：

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)-4 x y^{\prime}-6 y=-6 \tag{1}
\end{equation*}
$$

（a）．Assume the $y=x^{n}$ for the complementary solution，determine n ．（5\％）
（b）．If $y_{1}(x)=\frac{1}{x}$ is one of the complementary solution，please determine the other one $y_{2}(x)$ by method of variations of parameters，$y_{2}(x)=y_{1}(x) u_{1}(x)$ ．Please find $u_{1}(x)$ ．（5\％）
（c）．Solve the particular solution by $y_{p}(x)=y_{1}(x) v_{1}(x)+y_{2}(x) v_{2}(x)$ ，where

$$
\begin{aligned}
& y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0 \\
& y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=\frac{-6}{x^{2}}
\end{aligned}
$$

Please determine v_{1}, v_{2} and y_{p} ．(5%)
（d）．By changing variable，$x=e^{t}$ and $y(x)=y\left(e^{t}\right)=Y(t)$ ，then determine the ODE for $Y(t)$ and solve $Y(t)$ and $y(x)$ ．(5%)
（e）．By taking the Laplace transform twice with respect to Eq．（3），derive the results．（5\％）

