國立臺灣海洋大學河海工程學系 2001 工程數學 (三) 第五次作業小考

1. The origin is an ordinary point of the Chebyshev equation,

 $(1-z^2)y'' - zy' + m^2y = 0,$

which therefore has series solutions of the form $z^{\sigma} \sum_{0}^{\infty} a_n z^n$ for $\sigma = 0$ and $\sigma = 1$.

- (a)Find the recurrence relationships for the a_n in the two cases and show that there exist polynomial solutions $T_m(z)$:
 - (i) for $\sigma = 0$, when m is an even integer, the polynomial having $\frac{1}{2}(m+2)$ terms;
 - (ii) for $\sigma = 1$, when m is an odd integer, the polynomial having $\frac{1}{2}(m+1)$ terms.
- (b) $T_m(z)$ is normalized so as to have $T_m(1) = 1$. Find explicit forms for $T_m(z)$ for m = 0, 1, 2, 3.
- (c) Show that the corresponding non-terminating series solutions ${\cal S}_m(z)$ have as their first few terms

$$S_0(z) = a_0(z + \frac{1}{3!}z^3 + \frac{9}{5!}z^5 + \cdots),$$

$$S_1(z) = a_0(1 - \frac{1}{2!}z^2 - \frac{3}{4!}z^4 - \cdots),$$

$$S_2(z) = a_0(z - \frac{3}{3!}z^3 - \frac{15}{5!}z^5 - \cdots),$$

$$S_3(z) = a_0(1 - \frac{9}{2!}z^2 + \frac{45}{4!}z^4 + \cdots).$$