國立臺灣海洋大學河海工程學系 2001 工程數學（三）第五次作業小考

1．The origin is an ordinary point of the Chebyshev equation，

$$
\left(1-z^{2}\right) y^{\prime \prime}-z y^{\prime}+m^{2} y=0
$$

which therefore has series solutions of the form $z^{\sigma} \sum_{0}^{\infty} a_{n} z^{n}$ for $\sigma=0$ and $\sigma=1$ ．
（a）Find the recurrence relationships for the a_{n} in the two cases and show that there exist polynomial solutions $T_{m}(z)$ ：
（i）for $\sigma=0$ ，when m is an even integer，the polynomial having $\frac{1}{2}(m+2)$ terms；
（ii）for $\sigma=1$ ，when m is an odd integer，the polynomial having $\frac{1}{2}(m+1)$ terms．
（b）$T_{m}(z)$ is normalized so as to have $T_{m}(1)=1$ ．Find explicit forms for $T_{m}(z)$ for $m=0,1,2,3$ ．
（c）Show that the corresponding non－terminating series solutions $S_{m}(z)$ have as their first few terms

$$
\begin{aligned}
& S_{0}(z)=a_{0}\left(z+\frac{1}{3!} z^{3}+\frac{9}{5!} z^{5}+\cdots\right), \\
& S_{1}(z)=a_{0}\left(1-\frac{1}{2!} z^{2}-\frac{3}{4!} z^{4}-\cdots\right), \\
& S_{2}(z)=a_{0}\left(z-\frac{3}{3!} z^{3}-\frac{15}{5!} z^{5}-\cdots\right), \\
& S_{3}(z)=a_{0}\left(1-\frac{9}{2!} z^{2}+\frac{45}{4!} z^{4}+\cdots\right) .
\end{aligned}
$$

