參變數法及降階法

海大河海系 陳正宗

Statement of problem
Given two solutions y_{1} and y_{2} satisfy

$$
a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0
$$

Find a solution $y_{p}(x)$ satisfy

$$
\begin{equation*}
a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=f(x) \tag{1}
\end{equation*}
$$

Review of linear algebra：
Given

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

The solution of (x, y) is

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta} \\
& y=\frac{\Delta_{2}}{\Delta}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta=a_{1} b_{2}-a_{2} b_{1} \\
& \Delta_{1}=c_{1} b_{2}-c_{2} b_{1} \\
& \Delta_{2}=a_{1} c_{2}-a_{2} c_{1}
\end{aligned}
$$

ODE：

$$
\begin{align*}
& a_{0}(x) y_{1}^{\prime \prime}(x)+a_{1}(x) y_{1}^{\prime}(x)+a_{2}(x) y_{1}(x)=0 \tag{2}\\
& a_{0}(x) y_{2}^{\prime \prime}(x)+a_{1}(x) y_{2}^{\prime}(x)+a_{2}(x) y_{2}(x)=0 \tag{3}
\end{align*}
$$

Setting

$$
\begin{align*}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \tag{4}\\
& y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \tag{5}
\end{align*}
$$

To solve $y_{p}(x)$ is changed to solve u_{1} and u_{2} ．

Two degrees of freedom，u_{1} and u_{2} ，must be determined．By setting the first constraint，

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \tag{6}
\end{equation*}
$$

Eq．（5）can be reduced to

$$
\begin{equation*}
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \tag{7}
\end{equation*}
$$

Differentiating x again，we have

$$
\begin{equation*}
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} \tag{8}
\end{equation*}
$$

Substituting Eq．（8）and（7）into Eq．（1），we have

$$
\begin{equation*}
a_{0}\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right)+a_{1}\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right) \quad+a_{2}\left(u_{1} y_{1}+u_{2} y_{2}\right)=f(x) \tag{9}
\end{equation*}
$$

Eq．（9）can be reformulated to

$$
\begin{align*}
& u_{1}\left(a_{0}(x) y_{1}^{\prime \prime}(x)+a_{1}(x) y_{1}^{\prime}(x)+a_{2}(x) y_{1}(x)\right) \\
+ & u_{2}\left(a_{0}(x) y_{2}^{\prime \prime}(x)+a_{1}(x) y_{2}^{\prime}(x)+a_{2}(x) y_{2}(x)\right) \\
+ & a_{0}\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=f(x) \tag{10}
\end{align*}
$$

Since y_{1} and y_{2} are solutions of homogeneous ODE，we have

$$
\begin{equation*}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=\frac{f(x)}{a_{0}} \tag{11}
\end{equation*}
$$

Two equations are summarized

$$
\begin{align*}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime} & =0 \tag{12}\\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} & =\frac{f(x)}{a_{0}} \tag{13}
\end{align*}
$$

Solve u_{1}^{\prime} and u_{2}^{\prime} first，we have

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{W_{1}}{W\left(y_{1}, y_{2}\right)} \\
u_{2}^{\prime} & =\frac{W_{2}}{W\left(y_{1}, y_{2}\right)}
\end{aligned}
$$

where $W\left(y_{1}, y_{2}\right)$ is Wronskian determined by

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
& W_{1}=-y_{2} f(x) / a_{0}(x) \\
& W_{2}=y_{1} f(x) / a_{0}(x)
\end{aligned}
$$

