多蕬數法的廣義性

海大河海系 陳正宗

Since y_{1} and y_{2} are complementary solutions for ODE，we have

$$
\begin{align*}
y_{1}^{\prime \prime}(x)+a(x) y_{1}^{\prime}(x)+b(x) y_{1}(x) & =0 \tag{1}\\
y_{2}^{\prime \prime}(x)+a(x) y_{2}^{\prime}(x)+b(x) y_{2}(x) & =0 \tag{2}
\end{align*}
$$

Eq．（1）$\times y_{2}$－Eq．（2）$\times y_{1}$ ，we have

$$
\frac{d}{d x}\left\{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right\}+a(x)\left\{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right\}=0
$$

By setting the Wronskian

$$
W(x)=W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

$W(x)$ satisfies the following first ODE

$$
W^{\prime}(x)+a(x) W(x)=0
$$

The solution is

$$
W(x)=k e^{-\int a(x) d x}
$$

Without loss of generality，given two degrees of freedoms，u_{1} and u_{2} ，must be determined． By setting the first constraint，

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=c \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)-a(x) c \tag{4}
\end{equation*}
$$

where c is arbitrary constant．Two equations are summarized

$$
\begin{align*}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime} & =c \tag{5}\\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} & =f(x)-a(x) c \tag{6}
\end{align*}
$$

Solve u_{1}^{\prime} and u_{2}^{\prime} first，we have

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{-f(x) y_{2}}{W\left(y_{1}, y_{2}\right)}+c\left(\frac{y_{2}^{\prime}+a y_{2}}{W}\right) \\
& u_{2}^{\prime}=\frac{f(x) y_{1}}{W\left(y_{1}, y_{2}\right)}-c\left(\frac{y_{1}^{\prime}+a y_{1}}{W}\right)
\end{aligned}
$$

The two additional terms containg c are present．It is interesting to find that

$$
\begin{aligned}
& u_{1}^{\prime}=c\left(\frac{y_{2}^{\prime}+a y_{2}}{W}\right)\left(\frac{e^{\int a(x) d x}}{e^{\int a(x) d x}}\right)=c\left(y_{2} e^{\int a(x) d x}\right)^{\prime} \\
& u_{2} ; c\left(\frac{y_{1}^{\prime}+a y_{1}}{W}\right)\left(\frac{e^{\int a(x) d x}}{e^{\int a(x) d x}}\right)=c\left(y_{1} e^{\int a(x) d x}\right)^{\prime}
\end{aligned}
$$

They can be cancelled each other．

