海大河海系 陳正宗

Given y_{1} is one complementary solution for ODE，

$$
\begin{equation*}
y_{1}^{\prime \prime}(x)+a(x) y_{1}^{\prime}(x)+b(x) y_{1}(x)=0 \tag{1}
\end{equation*}
$$

solve another complementary solution y_{2} ．By setting the Wronskian

$$
W(x)=W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

$W(x)$ satisfies the following first ODE

$$
W^{\prime}(x)+a(x) W(x)=0
$$

The solution is

$$
W(x)=k e^{-\int a(x) d x}
$$

Therefore，we have first order ODE for y_{2} as follows：

$$
\begin{equation*}
y_{2}^{\prime}-\frac{y_{1}^{\prime}}{y_{1}} y_{2}=\frac{k}{y_{1}} e^{-\int a(x) d x} \tag{2}
\end{equation*}
$$

Example：

$$
y^{\prime \prime}+3 y^{\prime}=2 y=0
$$

Sol：$y_{1}=e^{-x}, y_{2}(x)$ satisfies

$$
\begin{aligned}
& y_{2}^{\prime}-\frac{-e^{-x}}{e^{-x}} y_{2}=\frac{k}{e^{-x}} e^{-\int 3 d x} \\
& y_{2}^{\prime}+y_{2}=k e^{-2 x} \\
& y_{2}=c e^{-x}+K e^{-2 x}
\end{aligned}
$$

Exercise：

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)-4 x y^{\prime}-6 y=-6, \tag{3}
\end{equation*}
$$

（a）if $y_{1}(x)=\frac{1}{x}$ is one of the complementary solution，solve y_{2} using Wronskian．

