國立臺彎海洋大學河海工程學系 2002 工程數學（三）期末考

1．Explain the following items．（ 15% ）
（1）．Symmetric matrix，（2）．Hermitian matrix，（3）．Hermitian operator，（4）．Green＇s function and（5）．Fundamental solution

2．Determine the eigenvalues and eigenfunctions for $\frac{d^{2} y_{n}(x)}{d x^{2}}=\lambda_{n} y_{n}(x)$ subject to $y_{n}(0)=0$ and $y^{\prime}(1)=0$ ．（10\％）Solve the Green＇s function $y(x)=G(x, s)$ in terms of closed form and series form for

$$
\frac{d^{2} y(x)}{d x^{2}}=\delta(x-s)
$$

subject to $y(0)=0$ and $y^{\prime}(1)=0$ ．（10 \％）Solve the particular solution in terms of closed form and series form for

$$
\frac{d^{2} y(x)}{d x^{2}}=\cos (x)
$$

subject to $y(0)=0$ and $y^{\prime}(1)=0 .(10 \%)$
3．Change the two ODEs to the Sturm－Liouville forms of $\left(p y^{\prime}\right)^{\prime}+q y=-\lambda \rho y$ ．(20%)

$$
\begin{aligned}
& y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 \alpha y(x)=0 \\
& \left(1-x^{2}\right) y^{\prime \prime}(x)-x y^{\prime}(x)+n^{2} y(x)=0
\end{aligned}
$$

Please detemine the functions of p, q, ρ and the eigenvalue of λ ．
4．Find the solution

$$
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+14 y(x)=5 x^{3}
$$

where the Lengendre polynomials are $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$ and $P_{3}(x)=$ $\frac{1}{2}\left(5 x^{3}-3 x\right)$ ．First determine c_{n} such that $5 x^{3}=\sum_{n=0}^{3} c_{n} P_{n}(x) .(10 \%)$ Then solve the particular solution using eigenfunction expansion．（10 \％）

5．By substituting $x=e^{t}$ ，find the normalized eigenfunction $y_{n}(x)(10 \%)$ and the eigenvalues $\lambda_{n}(10 \%)$ for the operator \mathcal{L} defined by

$$
\mathcal{L}=x^{2} y^{\prime \prime}+2 x y^{\prime}+\frac{1}{4} y, \quad \text { subject to } \quad y(1)=y(e)=0
$$

Find the solution for $\mathcal{L}\{y(x)\}=\frac{1}{\sqrt{x}}$ using $y(x)=\sum a_{n} y_{n}(x)$ ．（10 \％）
6．Solve the Green＇s function in terms of closed form for

$$
\frac{d^{2} y(x)}{d x^{2}}+\pi^{2} y(x)=\delta(x-s)
$$

subject to $y(0)=y(1)$ and $y^{\prime}(0)=y^{\prime}(1) .(10 \%)$ Solve the particular solution for

$$
\frac{d^{2} y(x)}{d x^{2}}+\pi^{2} y(x)=\cos (\pi x)
$$

