工程數學（四）期末考（閉書）

18：00－22：00，25／5， 1995
I．The auxilliary system $U(x, s ; t, \tau)$ ，which is a solution of

$$
\mathcal{L}\{U\}=\frac{\partial^{2} U(x, s ; t, \tau)}{\partial t^{2}}-c^{2} \frac{\partial^{2} U(x, s ; t, \tau)}{\partial x^{2}}=\delta(x-s) \delta(t-\tau),-\infty<x<\infty, t>0
$$

with initial conditions

$$
\begin{aligned}
& \lim _{t \rightarrow \tau} U(x, s ; t, \tau)=0 \\
& \lim _{t \rightarrow \tau} \dot{U}(x, s ; t, \tau)=0
\end{aligned}
$$

and no boundary condition since $-\infty<x<\infty$ ，
I．（a）Given the exact form for $U(x, s ; t, \tau)(30 \%)$ ：

$$
U(x, s ; t, \tau)=\frac{1}{2 c} H(x-s+c(t-\tau))-\frac{1}{2 c} H(x-s-c(t-\tau))=\bar{U}(x-s, t-\tau)
$$

Answer the following questions and explain the reason．

$$
\begin{gather*}
U(x, s ; t, \tau)=\text { or } \neq U(s, x ; t, \tau) \tag{1}\\
U(x, s ; t, \tau)=\text { or } \neq U(x, s ; \tau, t) \tag{2}\\
U(x, s ; t, \tau)=\text { or } \neq U(s, x ; \tau, t) \tag{3}\\
\mathcal{L}\{U(x, s ; t, \tau)\}=\text { or } \neq \mathcal{L}\{U(s, x ; \tau, t)\} \tag{4}\\
U\left(s, x ; \tau^{+}, \tau\right)=0 \text { or } U\left(s, x ; \tau, \tau^{+}\right)=0 \tag{5}\\
\frac{\partial^{2} U(s, x ; t, \tau)}{\partial x^{2}}=\text { or } \neq \frac{\partial^{2} U(s, x ; t, \tau)}{\partial s^{2}} \tag{6}\\
\frac{\partial^{2} U(s, x ; t, \tau)}{\partial t^{2}}=\text { or } \neq \frac{\partial^{2} U(s, x ; t, \tau)}{\partial \tau^{2}} \tag{7}
\end{gather*}
$$

I．（b）Series form（30 \％）：
Derivation of $p_{m}(x)$ ：

$$
\delta(x-s)=\sum_{m=1}^{\infty} p_{m}(x) \sin (m \pi s / l)
$$

Derivation of $q_{m}(t, \tau)$ ：

$$
\mathbf{U}(\mathbf{x}, \mathbf{s} ; t, \tau)=\sum_{m=1}^{\infty} q_{m}(t, \tau) \sin (m \pi x / l) \sin (m \pi s / l)
$$

Repeat Eqs．（1）to（7）and explain the reason．

II．Solve the heat conduction problem with time－dependent boundary conditions（30\％）：

$$
\frac{\partial u(x, t)}{\partial t}-\alpha^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=0
$$

with initial conditions

$$
u(x, 0)=0
$$

and boundary conditions

$$
\begin{aligned}
u(0, t) & =a(t) \\
u(l, t) & =b(t)
\end{aligned}
$$

$(20,12,19,11.5,20,11)(20,11,21,10.5,20,10)(20,10,19,9.5,20,9)(20,9,21,8.5,20,8)$
Fig． 1 An infinite string with a spring and a lump mass at $x=0$
III．As shown in Fig．1，string reflection and transmission will occur due to a spring at $x=0$ with spring constant，k ，and a sphere with lump mass，m ，in one medium．Solve the PDE using diamond rule．（30\％）

$$
u_{t t}=c^{2} u_{x x}, \quad \text { for }-\infty<x<\infty, \quad t>0
$$

with initial condition of displacement

$$
u(x, 0)=\left\{\begin{array}{l}
f(x), \quad \text { for } x>0 \\
0, \quad \text { for } x<0
\end{array}\right.
$$

with initial condition of velocity

$$
u_{t}(x, 0)= \begin{cases}0, & \text { for } x>0 \\ 0, & \text { for } x<0\end{cases}
$$

$u(x, t)$ is continuous across $x=0$,

$$
u\left(0^{+}, t\right)=u\left(0^{-}, t\right)
$$

Force can be transmitted across $x=0$ ，

$$
m \ddot{u}(0, t)+k u(0, t)=\rho c^{2} u_{x}\left(0^{+}, t\right)-\rho c^{2} u_{x}\left(0^{-}, t\right)
$$

（1）．Determine the solution in each region．
（2）．Determine the ratio of transmission and reflection．
（3）．Reduce the solution by $m \rightarrow 0$ and check the following solution if $k \rightarrow 0$

$$
r(t)=u(0, t)=\int_{0}^{t} \frac{\rho c}{m} e^{-\frac{\rho c}{m}(t-\tau)} f(c \tau) d \tau
$$

海大河工系陳正宗 工程數學（四）－期末考
存檔：m4fin．ctx建檔：Mar．／12／＇02

