工程數學 四，偏微分方程

8：20－10：10，Mar．10， 1995
I．By using the diamond rule，solve the problem of p．140．in text（1）．$u(x, t)$ versus $x,(2) . u(x, t)$ versus t ．
II．Solve the D＇Alembert solution by Fourier transform．
III．Solve the D＇Alembert solution by Laplace transform．
IV．Solve the PDE

$$
u_{t t}=u_{x x}, \quad \text { for } 0<x<1, \quad t>0
$$

with initial conditions

$$
u(x, 0)=0, u_{t}(x, 0)=0
$$

and boundary conditions

$$
u(0, t)=a(t), u(1, t)=b(t)
$$

（1）diamond rule
（2）eigenfunction expansion
（3）quasi－static decomposition method

V．Solve the PDE

$$
\rho u_{t t}=-E I u_{x x x x}, \quad \text { for } 0<x<1, \quad t>0
$$

with initial conditions

$$
u(x, 0)=0, u_{t}(x, 0)=0
$$

and boundary conditions

$$
\begin{aligned}
& u(0, t)=a(t), u(1, t)=b(t) \\
& u_{x x}(0, t)=0, u_{x x}(1, t)=0
\end{aligned}
$$

（1）eigenfunction expansion
（2）quasi－static decomposition method
（ref：陳與洪，邊界元素法，p．352，Earthquake Enginereing and Structural Dynamics）

