工程數學四，偏微分方程

8：20－10：10，Apr．1， 1995

I．Solve the PDE

$$
u_{t t}= \begin{cases}4 u_{x x}, & \text { for } x<0, t>0 \\ 1 u_{x x}, & \text { for } x>0, \\ t>0\end{cases}
$$

with initial conditions

$$
u(x, 0)=0, u_{t}(x, 0)=0
$$

and $u(x, t)$ is continuous across $x=0$ ，while

$$
u_{x}\left(0^{+}, t\right)-u_{x}\left(0^{-}, t\right)=a \sin (\omega t)
$$

where a, ω are two constants．
II．Reflection and transmission due to lump mass，m ，in one medium using diamond rule．Solve the PDE

$$
u_{t t}=c_{1}^{2} u_{x x}, \quad \text { for } x<0, \quad t>0
$$

with initial condition of displacement

$$
u(x, 0)=\left\{\begin{array}{l}
f(x), \quad \text { for } x>0 \\
0, \quad \text { for } x<0
\end{array}\right.
$$

with initial condition of velocity

$$
u_{t}(x, 0)= \begin{cases}0, & \text { for } x>0 \\ 0, & \text { for } x<0\end{cases}
$$

$u(x, t)$ is continuous across $x=0$,

$$
u\left(0^{+}, t\right)=u\left(0^{-}, t\right)
$$

Force can be transmitted across $x=0$ ，

$$
m \ddot{u}(t)=\rho c_{1}^{2} u_{x}\left(0^{+}, t\right)-\rho c_{1}^{2} u_{x}\left(0^{-}, t\right)
$$

（1）．Determine the ratio of transmission and reflection．

> 海大河工系陳正宗 工程數學 (四) 作業
> 存檔:m4hw3.ctx建檔:Mar./12/'02

