工程數學（四）－期末考（Take home）

$$
x=0
$$

$(20,12,19,11.5,20,11)(20,11,21,10.5,20,10)(20,10,19,9.5,20,9)(20,9,21,8.5,20,8)$
Fig． 1 An infinite string with a spring and a lump mass at $x=0$
I．As shown in Fig．1，string reflection and transmission will occur due to a spring at $x=0$ with spring constant，k ，and a sphere with lump mass，m ，in one medium．Solve the PDE using diamond rule．

$$
u_{t t}=c^{2} u_{x x}, \quad \text { for }-\infty<x<\infty, \quad t>0
$$

with initial condition of displacement

$$
u(x, 0)=\left\{\begin{array}{l}
f(x), \quad \text { for } x>0 \\
0, \quad \text { for } x<0
\end{array}\right.
$$

where the incident wave for $f(x)$ is

$$
f(x)=[H(x-5)-H(x-6)](x-5)+[H(x-6)-H(x-7)](-x+7)
$$

with initial condition of velocity

$$
u_{t}(x, 0)= \begin{cases}0, & \text { for } x>0 \\ 0, & \text { for } x<0\end{cases}
$$

$u(x, t)$ is continuous across $x=0$,

$$
u\left(0^{+}, t\right)=u\left(0^{-}, t\right)
$$

Force can be transmitted across $x=0$ ，

$$
m \ddot{u}(0, t)+k u(0, t)=\rho c^{2} u_{x}\left(0^{+}, t\right)-\rho c^{2} u_{x}\left(0^{-}, t\right)
$$

（1）．Determine the solution in each region for $\rho=1, c=1$ ．
（2）．3－D plot and contour plot for $u(x, t)$ ．
（3）．Plot $u(x, t)$ for fixed x and plot $u(x, t)$ for fixed t ．
（4）．Determine the ratio of transmission and reflection．Will the barrier system make the wave dispersion ？
（5）．Parameteric study for fixed m ，changing k ．Parameteric study for fixed k ，changing m ．
（9）．Reduce the solution by $m \rightarrow 0$ and check the following solution if $k \rightarrow 0$

$$
r(t)=u(0, t)=\int_{0}^{t} \frac{\rho c}{m} e^{-\frac{\rho c}{m}(t-\tau)} f(c \tau) d \tau
$$

II．As shown in the course，change the string to beam，repeat the process．

$$
\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{2} u}{\partial t^{2}}=0
$$

subected to IC $u(x, 0)=0, \dot{u}(x, 0)=0$ and Bcs

$$
u(0, t)=\sin (t), u(1, t)=\sin (t)
$$

海大河工系陳正宗工程數學（四）－期末考

