國立海洋大學河海工程學系1998工程數學（四）期中考 OPEN BOOK

1．Consider the Cauchy problem

$$
y u_{x}-x u_{y}=0
$$

with two Cauchy data

$$
\begin{gathered}
u(\cos (\theta), \sin (\theta))=g(\theta),-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
u(0, y)=f(y),-1<y<1
\end{gathered}
$$

（a）．Does the solution exist for any $f(y)$ and $g(\theta) ?(10 \%)$
（b）．If（a）is not correct，then what is the condition of $f(y)$ and $g(\theta)$ which can confirm that there is a solution． Also，solve the solution $u(x, y)$ ．（ 10% ）

2．Consider the nonlinear first order PDE as shown below：

$$
u_{x} u_{y}=1
$$

（a）．Find the Monge cone．（10 \％）
（b）．Given the Cauchy data，$u(s, s)=2.5 s$ ，find all the solutions．（10 \％）
3．Solve the nonlinear first order PDE as shown below（15 \％）：

$$
u_{t}+u u_{x}+2 u x=0, \quad 0<x<1,0<t
$$

Given the Cauchy data，

$$
\begin{gathered}
u(x, 0)=4-x^{2}, \quad 0<x<1 \\
u(0, t)=1, \quad t>0
\end{gathered}
$$

4．Explain the characteristic value，charateristic vector，charateristic line（or curve）and charateristic strips．（10 \％）
5．Determine the family of circles for Mohr－Columb failure criterion envelope．（10 \％）

$$
\tau=c+\sigma \tan (\phi), c \text { and } \phi \text { are constants }
$$

6．Derive the D＇Alembert solution（15 \％）：
Governing equation

$$
u_{t t}=c_{1}^{2} u_{x x}, \quad-\infty<x<\infty, \quad t>0
$$

where c_{1} is wave velocity and the Cauchy data are

$$
u(x, 0)=\phi(x), \quad \dot{u}(x, 0)=\psi(x)
$$

D＇Alembert＇s solution ：

$$
u(x, t)=\frac{1}{2} \phi\left(x+c_{1} t\right)+\frac{1}{2} \phi\left(x-c_{1} t\right)+\frac{1}{2 c_{1}} \int_{x-c_{1} t}^{x+c_{1} t} \psi(x) d x
$$

7．Prove the diamond rule．（10 \％）

$$
u_{A}+u_{C}=u_{B}+u_{D}
$$

8．Explain the paradox in the course using the results of 6 and 7．（10 \％）
工海大河工系－1998 by Chen for partial differential equation
存檔：m4md．ctx建檔：Mar．／12／＇02

M4md.doc

