Table 1. If simple string subject to different excitations			
Mathematical model	Physical model	Engineering applications	
$\boxed{-EA\frac{\partial^2 u}{\partial x^2} + \rho u_{tt} = mg\delta(x - vt)}$	moving load	high speed track on cable	
u(0,t) = u(l,t) = 0			
$u(x,0) = 0, \dot{u}(x,0) = 0$			
$-EA\frac{\partial^2 u}{\partial x^2} + \rho u_{tt} = 0$	support excitations	cable on two mying mountains	
u(0,t) = a(t), u(l,t) = b(t)			
$u(x,0) = 0, \dot{u}(x,0) = 0$			
$-EA\frac{\partial^2 u}{\partial x^2} + \rho u_{tt} = P\delta(x-s)e^{i\omega t}$	forced vibration	cable detection by shaker	
u(0,t) = u(l,t) = 0			
$u(x,0) = 0, \dot{u}(x,0) = 0$			
$-EA\frac{\partial^2 u}{\partial x^2} + \rho u_{tt} = 0$	free vibration	ambient testing for cable	
u(0,t) = u(l,t) = 0			
$u(x,0) = \phi(x), \dot{u}(x,0) = \psi(x)$			

Table 1: A simple string subject to different excitations

Table 2: A simple beam subject to different excitations

Mathematical model	Physical model	Engineering applications
$EI\frac{\partial^4 u}{\partial x^4} + \rho u_{tt} = mg\delta(x - vt)$	moving load	high speed rail way across bridge
u(0,t) = u(l,t) = 0		
$u^{"}(0,t) = u^{"}(l,t) = 0$		
$u(x,0) = 0, \dot{u}(x,0) = 0$		
$EI\frac{\partial^4 u}{\partial x^4} + \rho u_{tt} = 0$	support excitations	earthquake engineering
u(0,t) = a(t), u(l,t) = b(t)		
u''(0,t) = u''(l,t) = 0		
$u(x,0) = 0, \dot{u}(x,0) = 0$		
$\boxed{EI\frac{\partial^4 u}{\partial x^4} + \rho u_{tt} = P\delta(x-s)e^{i\omega t}}$	forced vibration	bridge detection by shaker
u(0,t) = u(l,t) = 0		
u''(0,t) = u''(l,t) = 0		
$u(x,0) = 0, \dot{u}(x,0) = 0$		
$EI\frac{\partial^4 u}{\partial x^4} + \rho u_{tt} = 0$	free vibration	ambient testing for bridge
u(0,t) = u(l,t) = 0		
u''(0,t) = u''(l,t) = 0		
$u(x,0) = \phi(x), \dot{u}(x,0) = \psi(x)$		

_海大河工系陳正宗 工數 (四) ____ 存檔:beam1.ctx建檔:Feb./27/'02