Hypersingular integral equation and its applications to computational mechanics

Outlines

- Introduction to BEM
- Introduction to dual BEM
- Theory of dual integral equations
- The role of dual integral equations
- Applications
 - 1. fictitious frequency (Helmholtz equation)
 - 2. spurious eigenvalue (Helmholtz equation)
 - 3. degenerate boundary (Laplace and Helmholtz)
 - 4. corner problem (Laplace and Helmholtz)
 - 5. adaptive BEM (Laplace and Helmholtz)
 - 6. degenerate scale(Laplace equation)
- Conclusions

What Is Boundary Element Method ?

- geometry node
 - American doctor !

- the Nth constant or linear element
 - **Chinese doctor !**

What Is Dual Boundary Element Method ?

Boundary element method

Artificial boundary introduced !

Dual boundary element method

Dual integral equations needed !

Degeneracy of the Degenerate Boundary

- geometry node
- the Nth constant or linear element

 $[U]{t} = [T]{u}$

 $[L]{t} = [M]{u}$

7		4.000	-1.333	-0.205	-0.061	0.600	-0.600	-0.800	-1.600	
;)		-1.333	4.000	-1.600	-0.800	-0.600	0.600	-0.061	-0.205	
ĺ.		-0.282	-1.600	4.000	-1.600	-0.400	0.400	-0.282	-0.236	
	[M]_	-0.061	-0.800	-1.600	4.000	-1.000	1.000	-1.333	-0.205	
	[[]]]	0.853	-0.853	-0.715	-3.765	8.000	-8.000	3.765	0.715	5(+)
		-0.853	0.853	0.715	3.765	-8.000	8.000	3.765	-0.715	6(_)
		-0.800	-0.062	-0.205	-1.333	1.000	-1.000	4.000	-1.600	0(-)
		-1.600	-0.282	-0.235	-0.282	0.400	-0.400	-1.600	4.000	

Theory of dual integral equations

$$f(x) = (x-a)^2 Q(x) + px + q$$

$$f(a) = pa + q, \quad when \ x = a$$

The constraint equation is not enough to determine the coefficient *p* **and** *q*,

Another constraint equation is required

$$f'(x) = 2(x-a)Q(x) + (x-a)^2Q'(x) + p$$

 $f'(a) = p$, when $x = a$

Dual integral equations

Singular integral equation

$$2\pi u(x) = \int_{B} T(s, x) u(s) dB(s) - \int_{B} U(s, x) t(s) dB(s), x \in D$$

Hypersingular integral equation
$$2\pi t(x) = \int_{B} M(s, x) u(s) dB(s) - \int_{B} L(s, x) t(s) dB(s), x \in D$$

where U(s,x) is the fundamental solution .

$$T(s,x) \equiv \frac{\partial U}{\partial s}$$
 $L(s,x) \equiv \frac{\partial U}{\partial x}$ $M(s,x) \equiv \frac{\partial^2 U}{\partial s \partial x}$

Roles of hypersingularity in boundary element method

Four pitfalls in rank-deficiency problems using BEM

Table 1-1 The rank-deficiency problems using BEM.

Physical	Exterior acoustics	Interior acoustics	Degenerate boundary	Corner problem
problems		(Eigen problem)		
Mathematical	Complex-valued BEM	BEM	Complex-valued BEM	BEM
formulation &	(UT or LM)	(real-part BEM	(UT or LM)	(UT or LM)
numerical	.5.4 GA	or imaginary-part BEM	Le Lo	26 S
method		MRM)		
Numerical trouble	276 477 Re 479 479 479 479 479 479 479 479		$[T] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{17} \\ \times & \times & \times & \cdots & \times \\ \times & \times & \times & \cdots & \times \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{71} & a_{72} & a_{73} & \cdots & a_{77} \end{bmatrix}$	$[U] = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{17} \\ \times & \times & \times & \cdots & \times \\ \times & \times & \times & \cdots & \times \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ b_{71} & b_{72} & b_{73} & \cdots & b_{77} \end{bmatrix}$
Treatment	1. Dual BEM	1. Dual BEM	1. Dual BEM	1. Dual BEM
	2. CHIEF method	2. CHEEF method		
	3. Burton and Miller	3. SVD updating technique		
	method			

Mathematical tools

- 1. Degenerate kernels
- 2. Circulants
- 3. Fredholm alternative theorem
- 4. SVD updating term and updating document

Degenerate kernels

$$U(s,x) = \frac{-i\pi H_0^{(1)}(kr)}{2} \quad \text{(closed-form)}$$
$$U(s,x) = \begin{cases} U^i(R,\theta;\rho,\phi) = \sum_{n=-\infty}^{\infty} \frac{\pi}{2} [-iJ_n(kR) + Y_n(kR)] J_n(k\rho) \cos(n(\theta-\phi)), R > \rho \\ U^e(R,\theta;\rho,\phi) = \sum_{n=-\infty}^{\infty} \frac{\pi}{2} [-iJ_n(k\rho) + Y_n(k\rho)] J_n(kR) \cos(n(\theta-\phi)), R < \rho \\ Y_1 \end{cases}$$

 $s = (R, \theta)$: source point $x = (\rho, \phi)$: field point

Circulants

Discretizing 2N constant elements for a circular boundary

G can be $U^i, U^e, T^i, T^e, L^i, L^e, M^i$ or M^e

$$T(s,x) \equiv \frac{\partial U}{\partial n_s}$$
 $L(s,x) \equiv \frac{\partial U}{\partial n_x}$ $M(s,x) \equiv \frac{\partial^2 U}{\partial n_s \partial n_x}$

Properties of circulants

$$a_{m} = \int_{(m+1/2)\Delta\theta}^{(m+1/2)\Delta\theta} G(\theta,0)Rd\theta \approx G(\theta_{m},0)R\Delta\theta, \quad m = 0,1,2\cdots,2N-1$$

$$\Delta\theta = \frac{2\pi}{2N}, \quad \theta_{m} = m\Delta\theta$$

[G] is the circulants.
[G] = $a_{0}I + a_{1}C_{2N}^{1} + a_{2}C_{2N}^{2} + \cdots + a_{2N-1}C_{2N}^{2N-1}$

$$C_{2N} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}_{2N\times 2N}$$

海大河エカ學聲響振動實驗室
MSV LAB HRE NTOU

Eigenvalue and eigenvector of circulants

The eigenvalue for the circulants is the root for $\alpha^{2N} = 1$

$$\alpha_{n} = e^{i\frac{2\pi n}{2N}}, \quad n = 0, \pm 1, \pm 2, \cdots, \pm (N-1), N$$

The eigenvector is $\{\phi_{n}\} = \begin{cases} \alpha_{n}^{0} \\ \alpha_{n}^{1} \\ \alpha_{n}^{2} \\ \vdots \\ \alpha_{n}^{2N-1} \end{cases}$

Eigenvalue of the influence matrices

$$\begin{split} \lambda_{l} &= \pi^{2} \rho(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}(k\rho), \\ \mu_{l} &= \pi^{2} k\rho(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}'(k\rho), \\ \upsilon_{l} &= \pi^{2} k\rho(-iJ_{l}'(k\rho) + Y_{l}'(k\rho))J_{l}(k\rho), \\ k_{l} &= \pi^{2} k^{2} \rho(-iJ_{l}'(k\rho) + Y_{l}'(k\rho))J_{l}'(k\rho). \end{split}$$

 $l = 0, \pm 1, \pm 2, \dots \pm (N-1), N$

Fredholm alternative theorem

For solving an algebraic system:

 $[A]{x} = {b} \neq {0} \qquad \qquad \{x\} \text{ has a unique solution,}$ If and only if Alternatively $\{x\} \text{ has at least one solution,}$ $If \qquad \qquad \{x\} \text{ has at least one solution,}$ $If \qquad \qquad \{x\} \text{ has at least one solution,}$ $\{b\}^{+}{\phi} = 0$

"+" denotes transpose conjugate

Singular value decomposition (SVD)

$$[U]_{m \times n} = \Phi_{m \times m} \Sigma_{m \times n} \Psi_{n \times n}^+$$

- Ψ : right unitary matrix
- Φ : left unitary matrix

$$[\Sigma] = \begin{bmatrix} \sigma_n & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_1 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}_{m \times n}, \quad m > n$$

 $\sigma_n > \sigma_{n-1} > \cdots > \sigma_1$

SVD updating term and updating document

Dirichlet B.C.	Neumann B.C.				
updating term	updating term				
$\begin{bmatrix} U_R \\ L_R \end{bmatrix} \{ \varphi_D \} = \{ 0 \}$	$\begin{bmatrix} T_R \\ M_R \end{bmatrix} \{ \varphi_N \} = \{ 0 \}$				
updating document	updating document				
$\{\varphi_D^T\}\begin{bmatrix} U_R^T & L_R^T\end{bmatrix} = \{0\}$	$\{\varphi_N^T\}\begin{bmatrix}T_R^T & M_R^T\end{bmatrix} = \{0\}$				
	海大河工力學聲響振動實驗室 MSV LAB HRE NTOU				

Four pitfalls in rank-deficiency problems using BEM

- **1. Fictitious frequency**
- 2. Spurious eigenvalue
- 3. Degenerate boundary
- 4. Corner problem

Fictitious frequency (exterior problem)

Radiation problem with Neumann B. C., $t = \bar{t}$

1.Singular equation (*UT*)

 $[T^{i}]{u} = [U^{i}]{\bar{t}} = {p_{1}}$

 $\{u\} = [T^{i}]^{-1}\{p_{1}\}$ $\upsilon_{l} = \pi^{2}k\rho(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}(k\rho)$ $(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}(k\rho) = 0$ $\because -iJ_{l}(k\rho) + Y_{l}(k\rho) \neq 0$

 $J_l(k\rho) = 0$

Radiation problem with Neumann B. C.,

2. Hypersingular equation (LM)

 $[M^{i}]\{u\} = [L^{i}]\{\bar{t}\} = \{p_{2}\},\$ $\{u\} = [M^{i}]^{-1}\{p_{2}\},\$ $k_{l} = \pi^{2}k^{2}\rho(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}'(k\rho))$ $(-iJ_{l}(k\rho) + Y_{l}(k\rho))J_{l}(k\rho) = 0$ $\because -iJ_{l}(k\rho) + Y_{l}(k\rho) \neq 0$ $J_{l}(k\rho) = 0$

Occurrence of fictitious frequency

	Direct method		Indirect method		
	UT	LM	UL	ТМ	
Dirichlet B.C.	$J_n(k\rho)$	$J'_n(k\rho)$	$J_n(k\rho)$	$J'_n(k\rho)$	
Neumann B.C.	$J_n(k\rho)$	$J'_n(k\rho)$	$J_n(k\rho)$	$J'_n(k\rho)$	

Spurious eigenvalue (interior problem)

True mode

Spurious mode

The true eigenvalues are the roots of

 $J_l(k\rho) = 0$

 $J_l(k\rho) = 0$

Real-part BEM 1.00 **(***S***) (S)** a. The UT equation 0.10 $[U_{R}^{e}]{t} = [T_{R}^{e}]{u} = 0$ $\sigma_{\scriptscriptstyle 1}$ 0.01 *R* denotes the real part. (T)0.00 The true and spurious (*T*): true (S): spurious eigenvalues are the roots of 0.00 k 2.00 0.00 1.00 $Y_{i}(k\rho)J_{i}(k\rho) = 0$

 $J_l(k\rho) = 0$, true eigenvalue $Y_l(k\rho) = 0$, spurious eigenvalue (S) (S) (S)

(T)

4.00

5.00

3.00

Real-part BEM

b. The *LM* equation

 $[L_{R}^{e}]{t} = [M_{R}^{e}]{u} = 0$

The true and spurious eigenvalues

are the roots of

 $Y'_{l}(k\rho)J_{l}(k\rho) = 0$ $J_{l}(k\rho) = 0$, true eigenvalue $Y'_{l}(k\rho) = 0$, spurious eigenvalue

		Direct method						
		U1	' formulatio	LN	<i>LM</i> formulation			
		Comp. valued BEM	Real- part BEM	Imag part BEM	Comp. valued BEM	Real- part BEM	Imag. part BEM	
Dirichlet B.C.	True	\boldsymbol{J}_n	\boldsymbol{J}_n	\boldsymbol{J}_n	\boldsymbol{J}_n	J_{n}	\boldsymbol{J}_n	
	Spurious		Y_n	J_n^{\star}		Y'_n	J'_n	
Neumann	True	J'_n	J'_n	J'_n	J'_n	J'_n	J'_n	
B.C.	Spurious		Y_n	\boldsymbol{J}_n		Y'_n	J'_n	

$$K_{w} = \frac{k\sqrt{R/2\pi}}{\sin(kR)} \int_{0}^{2\pi} \sin(\frac{\theta'}{2})\phi(R,\theta')d\theta'$$

R : the radius enclosing the singularity

DtN method

39

Laplace equation

$$\nabla^2(x) = 0, \quad x \in D$$

 ∇^2 : Laplace operator *D* : domain of interest

Treatment for degenerate boundary problems

- 1. cutoff wall
- 2. sheet pile
- 3. crack
- 4. baffle
- 5. thin airfoil
- 6. antenna

The degenerate scales for different geometry shapes

Conclusions

- The theory of dual integral equation has been reviewed
- The role of hypersingularity is examined
- The applications of dual BEM to Helmholtz equation have been demonstrated.
- The applications of dual BEM to Laplace equation have been demonstrated.